正方體中,是棱的中點(diǎn),是側(cè)面內(nèi)的動(dòng)點(diǎn),且平面,則與平面所成角的正切值的集合是____________.

試題分析:取的中點(diǎn)P,Q.易證,面,所以點(diǎn)F在直線PQ上.連接,則即為與平面所成角,,當(dāng)時(shí),最小;當(dāng)為PQ的中點(diǎn)時(shí),最大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)(2011•廣東)如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點(diǎn),O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點(diǎn).

(1)證明:O1′,A′,O2,B四點(diǎn)共面;
(2)設(shè)G為A A′中點(diǎn),延長(zhǎng)A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)棱垂直底面,。
(1)求證:
(2)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條互不重合的直線m,n,兩個(gè)不同的平面α,β,下列命題中正確的是(  )
A.若m∥α,n∥β,且m∥n,則α∥β
B.若m⊥α,n∥β,且m⊥n,則α⊥β
C.若m⊥α,n∥β,且m∥n,則α∥β
D.若m⊥α,n⊥β,且m⊥n,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方體ABCD-A′B′C′D′的棱長(zhǎng)為4,動(dòng)點(diǎn)E、F在棱AB上,且EF=2,動(dòng)點(diǎn)Q在棱D′C′上,則三棱錐A′-EFQ的體積(  )
A.與點(diǎn)E、F的位置有關(guān)
B.與點(diǎn)Q的位置有關(guān)
C.與點(diǎn)E、F、Q的位置都有關(guān)
D.與點(diǎn)E、F、Q的位置均無(wú)關(guān),是定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點(diǎn).
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求平面PAB與平面PCD所成的二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三棱錐中,已知,, 一繩子從A點(diǎn)繞三棱錐側(cè)面一圈回到點(diǎn)A的距離中,繩子最短距離是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m、n是兩條不同的直線,、是兩個(gè)不同的平面,則
A.若m//,n//,則m//nB.若m//,m//,則//
C.若m//n,m,則nD.若m//,,則m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面和直線,給出條件:①;②;③;④;⑤.為使,應(yīng)選擇下面四個(gè)選項(xiàng)中的(   )
A.③⑤B.①⑤C.①④D.②⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案