分析 (1)由橢圓短軸的兩個(gè)端點(diǎn)對(duì)橢圓焦點(diǎn)展開的角是橢圓上的點(diǎn)對(duì)焦點(diǎn)展開的角中的最大角,可得b≤c,即c2≥b2=a2-c2,化簡(jiǎn)解出即可得出.
(2)①當(dāng)離心率e取得最小值時(shí),e=$\frac{\sqrt{2}}{2}$=$\frac{c}{a}$,a=$\sqrt{2}c$,b=c.橢圓的方程可化為:$\frac{{x}^{2}}{2^{2}}+\frac{{y}^{2}}{^{2}}$=1,設(shè)橢圓上的任意一點(diǎn)P($\sqrt{2}$bcosθ,bsinθ),可得點(diǎn)N(0,3)到橢圓上的點(diǎn)P的距離d=$\sqrt{2^{2}-(bsinθ+3)^{2}+18}$,可知:當(dāng)且僅當(dāng)bsinθ+3=0時(shí),d取得最大值$\sqrt{2^{2}+18}$=5$\sqrt{2}$,解得b2,即可得出.
②直線l的方程為:y=k(x-4),設(shè)A(x1,y1),B(x2,y2),A′(x1,-y1).與橢圓方程聯(lián)立化為:(1+2k2)x2-16k2x+32k2-32=0,直線A′B的方程為:y+y1=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x1),把y1=k(x1-4),y2=k(x2-4),代入上述方程化簡(jiǎn)后,令y=0,化為:x=$\frac{2{x}_{1}{x}_{2}-4({x}_{1}+{x}_{2})}{{x}_{1}+{x}_{2}-8}$,把根與系數(shù)的關(guān)系代入即可得出.
解答 解:(1)∵橢圓短軸的兩個(gè)端點(diǎn)對(duì)橢圓焦點(diǎn)展開的角是橢圓上的點(diǎn)對(duì)焦點(diǎn)展開的角中的最大角,
∴b≤c,∴c2≥b2=a2-c2,∴$\frac{c}{a}$$≥\frac{\sqrt{2}}{2}$,∴e∈$[\frac{\sqrt{2}}{2},1)$.
(2)①當(dāng)離心率e取得最小值時(shí),e=$\frac{\sqrt{2}}{2}$=$\frac{c}{a}$,∴a=$\sqrt{2}c$,b=c.
橢圓的方程可化為:$\frac{{x}^{2}}{2^{2}}+\frac{{y}^{2}}{^{2}}$=1,
設(shè)橢圓上的任意一點(diǎn)P($\sqrt{2}$bcosθ,bsinθ),
點(diǎn)N(0,3)到橢圓上的點(diǎn)P的距離d=$\sqrt{(\sqrt{2}bcosθ)^{2}+(bsinθ-3)^{2}}$=$\sqrt{2^{2}-(bsinθ+3)^{2}+18}$
當(dāng)且僅當(dāng)bsinθ+3=0時(shí),d取得最大值$\sqrt{2^{2}+18}$=5$\sqrt{2}$,解得b2=16.
∴此時(shí)橢圓的方程為:$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1.
②F2(4,0).
直線l的方程為:y=k(x-4),設(shè)A(x1,y1),B(x2,y2),A′(x1,-y1).
聯(lián)立$\left\{\begin{array}{l}{y=k(x-4)}\\{{x}^{2}+2{y}^{2}=32}\end{array}\right.$,化為:(1+2k2)x2-16k2x+32k2-32=0,
∴x1+x2=$\frac{16{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{32{k}^{2}-32}{1+2{k}^{2}}$.
直線A′B的方程為:y+y1=$\frac{{y}_{2}+{y}_{1}}{{x}_{2}-{x}_{1}}$(x-x1),
由y1=k(x1-4),y2=k(x2-4),代入上述方程可得:(y+kx1-4k)(x2-x1)=[k(x1+x2)-8k](x-x1),
令y=0,化為:x=$\frac{2{x}_{1}{x}_{2}-4({x}_{1}+{x}_{2})}{{x}_{1}+{x}_{2}-8}$=$\frac{\frac{64(32{k}^{2}-1)}{1+2{k}^{2}}-\frac{64{k}^{2}}{1+2{k}^{2}}}{\frac{16{k}^{2}}{1+2{k}^{2}}-8}$=8.
∴直線A'B經(jīng)過定點(diǎn)(8,0).
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、一元二次的根與系數(shù)的關(guān)系、直線經(jīng)過定點(diǎn)問題、兩點(diǎn)之間距離公式,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相交 | C. | 外切 | D. | 內(nèi)切 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com