(2012•資陽一模)已知α,β是銳角,且sinα=
5
5
,sinβ=
10
10
,則α+β
=
π
4
π
4
分析:由α與β分別為銳角,根據(jù)sinα,sinβ的值,利用同角三角函數(shù)間的基本關(guān)系求出cosα與cosβ的值,利用兩角和與差的正弦函數(shù)公式化簡sin(α+β),將各種的值代入計算求出值,利用特殊角的三角函數(shù)值即可求出α+β的度數(shù).
解答:解:∵α,β是銳角,sinα=
5
5
,sinβ=
10
10
,
∴α+β∈(0,π),cosα=
1-sin2α
=
2
5
5
,cosβ=
1-sin2β
=
3
10
10
,
∴cos(α+β)=cosαcosβ-sinαsinβ=
2
5
5
×
3
10
10
-
5
5
×
10
10
=
2
2

則α+β=
π
4
..
故答案為:
π
4
點(diǎn)評:此題考查了兩角和與差的余弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)設(shè)函數(shù)f(x)=
21-x,x≤0
f(x-1),x>0
若關(guān)于x的方程f(x)=x+a有且只有兩個實根,則實數(shù)a的范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)已知向量
a
,
b
為單位向量,且它們的夾角為60°,則|
a
-3
b
|
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)若a>b,則下列命題成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)已知函數(shù)f(x)=a-
2
2x+1
是奇函數(shù),其反函數(shù)為f-1(x),則f-1(
3
5
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)已知函數(shù)f(x)=2lnx-x2+ax,a∈R.
(1)當(dāng)a=2時,求函數(shù)f(x)的圖象在x=1處的切線的方程;
(2)若函數(shù)f(x)-ax+m=0在[
1e
,e]
上有兩個不等的實數(shù)根,求實數(shù)m的取值范圍;
(3)若函數(shù)f(x)的圖象與x軸交于不同的點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,求證:f′(px1+qx2)<0(其中實數(shù)p,q滿足0<p≤q,p+q=1)

查看答案和解析>>

同步練習(xí)冊答案