設(shè)函數(shù)f(x)=ax+ (a,b∈Z),曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線(xiàn)y=f(x)上任一點(diǎn)的切線(xiàn)與直線(xiàn)x=1和直線(xiàn)y=x所圍三角形的面積為定值,
并求出此定值.
(1)解 f′(x)=a-,
解得或
因?yàn)閍,b∈Z,故f(x)=x+.
(2)證明 在曲線(xiàn)上任取一點(diǎn),由f′(x0)=1-知,過(guò)此點(diǎn)的切線(xiàn)
方程為y-=[1-] (x-x0).
令x=1,得y=, 切線(xiàn)與直線(xiàn)x=1的交點(diǎn)為 (1, );
令y=x,得y=2x0-1,切線(xiàn)與直線(xiàn)y=x的交點(diǎn)為(2x0-1,2x0-1);
直線(xiàn)x=1與直線(xiàn)y=x的交點(diǎn)為(1,1),從而所圍三角形的面積為
|2x0-1-1|=2.
所以,所圍三角形的面積為定值2.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知.
(I)求函數(shù)在上的最小值;
(II)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)
函數(shù),其中為常數(shù).
(1)證明:對(duì)任意,的圖象恒過(guò)定點(diǎn);
(2)當(dāng)時(shí),判斷函數(shù)是否存在極值?若存在,求出極值;若不存在,說(shuō)明理由;
(3)若對(duì)任意時(shí),恒為定義域上的增函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)函數(shù).
(Ⅰ)若,在處的切線(xiàn)相互垂直,求這兩個(gè)切線(xiàn)方程;
(Ⅱ)若單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=lnx-ax2+(2-a)x
(1)討論f(x)的單調(diào)性;(2)設(shè)a>0,證明:當(dāng)0<x<時(shí),f>f;
(3)若函數(shù)y=f(x)的圖象與x軸交于A(yíng),B兩點(diǎn),線(xiàn)段AB中點(diǎn)的橫坐標(biāo)為x0,證明f′(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)若直線(xiàn)過(guò)點(diǎn),且與曲線(xiàn)和都相切,
求實(shí)數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)設(shè),其中.
(1)當(dāng)時(shí),求的極值點(diǎn);
(2)若為R上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)已知函數(shù),
(1)當(dāng)t=1時(shí),求曲線(xiàn)處的切線(xiàn)方程;
(2)當(dāng)t≠0時(shí),求的單調(diào)區(qū)間;
(3)證明:對(duì)任意的在區(qū)間(0,1)內(nèi)均存在零點(diǎn)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com