【題目】棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取20根棉花纖維進行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于300mm的為“長纖維”,其余為“短纖維”)

纖維長度

(0,100)

[100,200)

[200,300)

[300,400)

[400,500]

甲地(根數(shù))

3

4

4

5

4

乙地(根數(shù))

1

1

2

10

6


(1)由以上統(tǒng)計數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.

甲地

乙地

總計

長纖維

短纖維

總計

附:(1) ;(2)臨界值表;

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為X,求X的分布列及數(shù)學(xué)期望.

【答案】
(1)9;16;25;11;4;15;20;20;40
(2)由表可知在8根中乙地“短纖維”的根數(shù)為 ,X的可能取值為:0,1,2,3, , ,

∴X的分布列為:

X

0

1

2

3

P


【解析】解:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下2×2列聯(lián)表:

甲地

乙地

總計

長纖維

9

16

25

短纖維

11

4

15

總計

20

20

40

根據(jù)2×2列聯(lián)表中的數(shù)據(jù),可得
所以,在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m>0, , .

(1) 若p是q的充分不必要條件,求實數(shù)m的取值范圍;

(2) 若m=5,“”為真命題,“”為假命題,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標(biāo)原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:

1證明直線l經(jīng)過定點并求此點的坐標(biāo);

2若直線l不經(jīng)過第四象限,求k的取值范圍;

3若直線lx軸負(fù)半軸于點A,交y軸正半軸于點B,O為坐標(biāo)原點,設(shè)的面積為S,求S的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊長分別為a,b,c,且cos2B﹣cos2A=2sinC(sinA﹣sinC).
(1)求角B的大小;
(2)若 ,求2a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax+a(a∈R),其中e為自然對數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)函數(shù)y=f(x)的圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點,x1<x2 , 點C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記 ,求at﹣(a+t)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)過拋物線的焦點的直線交拋物線于點,若以為直徑的圓過點,且與軸交于, 兩點,則( )

A. 3 B. 2 C. -3 D. -2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的定義域為R.
(Ⅰ)求實數(shù)m的范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足 時,求4a+7b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,四邊形是全等的等腰梯形,其中,且,點的中點,點的中點.

(Ⅰ)求證: 平面;

(Ⅱ)請在圖中所給的點中找出兩個點,使得這兩點所在的直線與平面垂直,并給出證明;

(Ⅲ)在線段上是否存在點,使得平面?如果存在,求出的長度;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案