【題目】棉花的纖維長度是評價棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取20根棉花纖維進行統(tǒng)計,結(jié)果如下表:(記纖維長度不低于300mm的為“長纖維”,其余為“短纖維”)
纖維長度 | (0,100) | [100,200) | [200,300) | [300,400) | [400,500] |
甲地(根數(shù)) | 3 | 4 | 4 | 5 | 4 |
乙地(根數(shù)) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.
甲地 | 乙地 | 總計 | |
長纖維 | |||
短纖維 | |||
總計 |
附:(1) ;(2)臨界值表;
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為X,求X的分布列及數(shù)學(xué)期望.
【答案】
(1)9;16;25;11;4;15;20;20;40
(2)由表可知在8根中乙地“短纖維”的根數(shù)為 ,X的可能取值為:0,1,2,3, , , , .
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
∴
【解析】解:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下2×2列聯(lián)表:
甲地 | 乙地 | 總計 | |
長纖維 | 9 | 16 | 25 |
短纖維 | 11 | 4 | 15 |
總計 | 20 | 20 | 40 |
根據(jù)2×2列聯(lián)表中的數(shù)據(jù),可得
所以,在犯錯誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m>0, , .
(1) 若p是q的充分不必要條件,求實數(shù)m的取值范圍;
(2) 若m=5,“”為真命題,“”為假命題,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點,為拋物線上一點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:
1證明直線l經(jīng)過定點并求此點的坐標(biāo);
2若直線l不經(jīng)過第四象限,求k的取值范圍;
3若直線l交x軸負(fù)半軸于點A,交y軸正半軸于點B,O為坐標(biāo)原點,設(shè)的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊長分別為a,b,c,且cos2B﹣cos2A=2sinC(sinA﹣sinC).
(1)求角B的大小;
(2)若 ,求2a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax+a(a∈R),其中e為自然對數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)函數(shù)y=f(x)的圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點,x1<x2 , 點C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記 ,求at﹣(a+t)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)過拋物線的焦點的直線交拋物線于點,若以為直徑的圓過點,且與軸交于, 兩點,則( )
A. 3 B. 2 C. -3 D. -2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的定義域為R.
(Ⅰ)求實數(shù)m的范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足 時,求4a+7b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面,四邊形和是全等的等腰梯形,其中,且,點為的中點,點是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)請在圖中所給的點中找出兩個點,使得這兩點所在的直線與平面垂直,并給出證明;
(Ⅲ)在線段上是否存在點,使得平面?如果存在,求出的長度;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com