如圖,在△ABC中,DC=2AD,AE=2EB,
AB
=a
,
AC
=b
,則用a,b表示
DE
 
分析:由題意得 
AE
=
2
3
AB
AD
=
1
3
AC
,把上述關系代入要求的 
DE
=
AE
-
AD
,化簡可得結(jié)果.
解答:精英家教網(wǎng)解:如圖  在△ABC中,DC=2AD,AE=2EB,
AB
=a
,
AC
=b
,
DE
=
AE
-
AD
=
2
3
AB
-
1
3
AC
=
2
3
a
+
1
3
b

故答案為:
2
3
a
+
1
3
b
點評:本題考查兩個向量的加法和減法法則,以及共線向量的表示方法,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長;
(2)計算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,設
AB
=a
,
AC
=b
,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習冊答案