設(shè)F1、F2是雙曲線
x2
4
-
y2
1
=1
的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且
PF1
PF2
=0
,則|
PF1
|•|
PF2
|
的值等于
 
分析:依題意可知a2=4,b2=12,進(jìn)而求得c,求得|F1F2|,令|PF1|=p,|PF2|=q,由勾股定理得p2+q2=|F1F2|2,求得p2+q2的值,由雙曲線定義:|p-q|=2a兩邊平方,把p2+q2代入即可求得pq即|PF1|•|PF2|的值.
解答:解:依題意可知a2=4,b2=1
所以c2=5
∴|F1F2|=2c=2
5

令|PF1|=p,|PF2|=q
由雙曲線定義:|p-q|=2a=4
平方得:p2-2pq+q2=16
PF1
PF2
=0
,∴∠F1PF2=90°,由勾股定理得:
p2+q2=|F1F2|2=20
所以pq=2
即|PF1|•|PF2|=2
故答案為:2.
點(diǎn)評(píng):本題主要考查了雙曲線的性質(zhì).要利用好雙曲線的定義是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,若
PF1
PF2
=0 且|
PF1
||
PF2
|=2ac(c=
a2+b2
),則雙曲線的離心率為( 。
A、
1+
5
2
B、
1+
3
2
C、2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•寶山區(qū)模擬)雙曲線C:
x2
a2
-
y2
b2
=1
上一點(diǎn)(2,
3
)
到左,右兩焦點(diǎn)距離的差為2.
(1)求雙曲線的方程;
(2)設(shè)F1,F(xiàn)2是雙曲線的左右焦點(diǎn),P是雙曲線上的點(diǎn),若|PF1|+|PF2|=6,求△PF1F2的面積;
(3)過(-2,0)作直線l交雙曲線C于A,B兩點(diǎn),若
OP
=
OA
+
OB
,是否存在這樣的直線l,使OAPB為矩形?若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線x2-
y224
=1
的兩個(gè)焦點(diǎn),是雙曲線上的一點(diǎn),且3|PF1|=4|PF2|,則△PF1F2的面積等于
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•許昌三模)設(shè)F1,F(xiàn)2是雙曲線
x2
3
-y2=1
的兩個(gè)焦點(diǎn),P在雙曲線上,當(dāng)△F1PF2的面積為2時(shí),
PF1
PF2
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右兩個(gè)焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使(
OP
+
OF2
)•
F2P
=0
(O為坐標(biāo)原點(diǎn)),且tan∠PF2F1=2,則雙曲線的離心率為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案