已知當(dāng)x∈[0,2]時(shí),函數(shù)y=x2-2ax+a2-2a+2有最小值5,求實(shí)數(shù)a的值.
配方得y=(x-a)2-2a+2,故函數(shù)圖象開口朝上,且對稱軸為x=a.…1分
當(dāng)a≤0時(shí),ymin=f(0)=a2-2a+2=5,解得a=-1或a=3(舍);…4分
當(dāng)0<a<2時(shí),ymin=f(a)=-2a+2=5,解得a=-
3
2
(舍);…7分
當(dāng)a≥2時(shí),ymin=f(2)=4-4a+a2-2a+2=5,
解得a=3+2
2
a=3-2
2
(舍).…10分
綜上,a=-1或a=3+2
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)集合M=[0,1),N=[1,2),函數(shù)f(x)=
2x(x∈M)
4-2x(x∈N)

(1)若x∈M,g(x)=f2(x)-2f(x)+a,且g(x)的最小值為1,求實(shí)數(shù)a的值;
(2)若x0∈M,且f(f(x0))∈M,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則f(m+1)的值是( 。
A.(-∞,+∞)B.(-∞,0)C.0D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+x-a,a∈R
(1)當(dāng)a=2時(shí),解不等式f(x)>1;
(2)若函數(shù)f(x)有最大值
17
8
,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x2-53x+196+|x2-53x+196|,則f(1)+f(2)+…+f(50)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=x2+ax+b(x∈R)中a,b∈R,若對于任意的a∈[-3,3],關(guān)于x的不等式f(x)>1在[-1,1]上恒成立,則b的取值范圍是( 。
A.(-∞,2)B.(-∞,3)C.(2,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=3x.
(1)若f(x)=2,求x的值;
(2)判斷x>0時(shí),f(x)的單調(diào)性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

lg
5
+lg
20
=( 。
A.5B.10C.1D.2

查看答案和解析>>

同步練習(xí)冊答案