【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費,若超過15次,超過部分的軟件服務(wù)每次收費標準為20元.
(1)設(shè)日收費為元,每天軟件服務(wù)的次數(shù)為,試寫出兩種方案中與的函數(shù)關(guān)系式;
(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
【答案】(1) .(2) 從節(jié)約成本的角度考慮,選擇方案一.
【解析】
(1)根據(jù)題中條件,建立等量關(guān)系,即可得出所需函數(shù)關(guān)系;
(2)分別設(shè)兩種方案的日收費為,,由題中條形圖,得到,的分布列,求出對應(yīng)期望,比較大小,即可得出結(jié)果.
(1)由題可知,方案一中的日收費與的函數(shù)關(guān)系式為
方案二中的日收費與的函數(shù)關(guān)系式為 .
(2)設(shè)方案一種的日收費為,由條形圖可得的分布列為
190 | 200 | 210 | 220 | 230 | |
0.1 | 0.4 | 0.1 | 0.2 | 0.2 |
所以(元)
方案二中的日收費為,由條形圖可得的分布列為
200 | 220 | 240 | |
0.6 | 0.2 | 0.2 |
(元)
所以從節(jié)約成本的角度考慮,選擇方案一.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列有關(guān)光線的入射與反射的兩個事實現(xiàn)象:現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角與反射角相等(如圖);現(xiàn)象(2);光線從橢圓的一個焦點出發(fā)經(jīng)橢圓反射后通過另一個焦點(如圖).試結(jié)合,上述事實現(xiàn)象完成下列問題:
(Ⅰ)有一橢圓型臺球桌,長軸長為2a,短軸長為2b.將一放置于焦點處的桌球擊出.經(jīng)過球桌邊緣的反射(假設(shè)球的反射充全符合現(xiàn)象(2)),后第一次返回到該焦點時所經(jīng)過的路程記為S,求S的值(用a,b表示);
(Ⅱ)結(jié)論:橢圓上任點P(x0,y0)處的切線的方程為.記橢圓C的方程為C:,在直線x=4上任一點M向橢圓C引切線,切點分別為A,B.求證:直線lAB恒過定點:
(Ⅲ)過點T(1,0)的直線l(直線l斜率不為0)與橢圓C:交于P、Q兩點,是否存在定點S(s,0),使得直線SP與SQ斜率之積為定值,若存在求出S坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學(xué)利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若函數(shù)存在唯一的零點,且,則的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列。
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的最大項的值與最小項的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
以平面直角坐標系xOy的原點為極點,x軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線l的坐標方程為,曲線C的參數(shù)方程為(θ為參數(shù)).
(1)求直線l的直角坐標方程和曲線C的普通方程;
(2)以曲線C上的動點M為圓心、r為半徑的圓恰與直線l相切,求r的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com