5.已知log5[log3(log2x)]=0,那么x${\;}^{-\frac{1}{3}}$=( 。
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{6}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

分析 利用對數(shù)與指數(shù)函數(shù)的運算性質(zhì)即可得出.

解答 解:∵log5[log3(log2x)]=0,∴l(xiāng)og3(log2x)=1,∴l(xiāng)og2x=3,∴x=23
那么x${\;}^{-\frac{1}{3}}$=${2}^{3×(-\frac{1}{3})}$=2-1=$\frac{1}{2}$.
故選:C.

點評 本題考查了對數(shù)與指數(shù)函數(shù)的運算性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.定義在實數(shù)集R上的函數(shù)f(x)都可以寫為一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和的形式,如果f(x)=2x+1,那么( 。
A.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$B.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$
C.$g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$D.$g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$).
(1)用“五點法”畫出函數(shù)在一個周期內(nèi)的圖象;
(2)完整敘述函數(shù)f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的圖象可以由函數(shù)f(x)=2sinx的圖象經(jīng)過兩步怎樣的變換得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
$\frac{1}{3}$x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$2
x$\frac{π}{2}$$\frac{7π}{2}$$\frac{13π}{2}$
y02020

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.記關(guān)于x的不等于$\frac{x-3}{x+1}≤0$的解集為P,不等式|x-a|≤1的解集為Q.
(1)求出集合P;
(2)若P∩Q=Q,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,若橢圓外存在一點P,滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則橢圓C的離心率e的取值范圍是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.$[{\sqrt{n}}]$表示不超過$\sqrt{n}$的最大整數(shù).${S_1}=[{\sqrt{1}}]+[{\sqrt{2}}]+[{\sqrt{3}}]=3$,${S_2}=[{\sqrt{4}}]+[{\sqrt{5}}]+[{\sqrt{6}}]+[{\sqrt{7}}]+[{\sqrt{8}}]=10$,${S_3}=[{\sqrt{9}}]+[{\sqrt{10}}]+[{\sqrt{11}}]+[{\sqrt{12}}]+[{\sqrt{13}}]+[{\sqrt{14}}]+[{\sqrt{15}}]=21$,那么S9=171.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知p:|x|≤2,q:0≤x≤2,則p是q的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某企業(yè)生產(chǎn)A、B、C三種家電,經(jīng)市場調(diào)查決定調(diào)整生產(chǎn)方案,計劃本季度(按不超過480個工時計算)生產(chǎn)A、B、C三種家電共120臺,其中A家電至少生產(chǎn)20臺,已知生產(chǎn)A、B、C三種家電每臺所需的工時分別為3、4、6個工時,每臺的產(chǎn)值分別為20、30、40千元,則按此方案生產(chǎn),此季度最高產(chǎn)值為( 。┣г
A.3600B.350C.4800D.480

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=4,AB=2.
(1)證明:平面PAD⊥平面PCD;
(2)若F為PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

同步練習冊答案