已知函數(shù)
(Ⅰ)當時,求的極值;
(Ⅱ)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

(Ⅰ)極小值為1+ln2,函數(shù)無極大值;(Ⅱ).

解析試題分析:(Ⅰ)首先確定函數(shù)的定義域(此步容易忽視),把代入函數(shù),再進行求導,列的變化情況表,即可求函數(shù)的極值;(Ⅱ)先對函數(shù)求導,得,再對兩種情況討論(此處易忽視這種情況),由題意函數(shù)在區(qū)間是增函數(shù),則恒成立,即不等式恒成立,從而再列出應滿足的關系式,解出的取值范圍.
試題解析:(Ⅰ)函數(shù)的定義域為,      1分
,當a=0時,,則,      3分
的變化情況如下表

x
(0,)

(,+∞)

-
0
+


極小值

∴當時, 的極小值為1+ln2,函數(shù)無極大值.               7分
(Ⅱ)由已知,得,  8分
,由,顯然不合題意,       9分
∵函數(shù)區(qū)間是增函數(shù),
恒成立,即不等式恒成立,
恒成立,  11分
,而當,函數(shù),  13分
∴實數(shù)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當時,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

 
(1)如果處取得最小值,求的解析式;
(2)如果的單調(diào)遞減區(qū)間的長度是正整數(shù),試求的值.(注:區(qū)間的長度為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為.
(I)求函數(shù)上的最小值;
(Ⅱ)對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題13分)已知函數(shù)
(1)若實數(shù)求函數(shù)上的極值;
(2)記函數(shù),設函數(shù)的圖像軸交于點,曲線點處的切線與兩坐標軸所圍成圖形的面積為則當時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的最大值;
(2)若函數(shù)沒有零點,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在的函數(shù),在處的切線斜率為
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案