平面內(nèi)到兩定點的距離之和為4的點M的軌跡是      (    )
A.橢圓B.線段C.圓D.以上都不對
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知坐標平面上的兩點,動點P到A、B兩點距離之和為常數(shù)2,則動點P的軌跡是(   )
A.橢圓        B.雙曲線       C.拋物線       D.線段

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點P與平面上兩定點連線的斜率的積為定值.
(1)試求動點P的軌跡方程C.
(2)設直線與曲線C交于M、N兩點,求|MN|

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知定點,動點滿足,
(1)求動點的軌跡方程,并說明方程表示什么曲線;
(2)當時,求的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)已知點,一動圓過點且與圓內(nèi)切.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)設點,點為曲線上任一點,求點到點距離的最大值;
(Ⅲ)在的條件下,設△的面積為是坐標原點,是曲線上橫坐標為的點),以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,點A在直線上移動,等腰△OPA的頂角∠OPA為120°(O,P,A按順時針方向排列),求點P的軌跡方程
    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分.)
A.(坐標系與參數(shù)方程選做題)在極坐標系中,兩點,間的距離是        
B.(不等式選講選做題)若不等式的解集為         
C.(幾何證明選講選做題)如圖,點是圓上的點, 且,則圓的面積等于      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線:①y=x+1,②y=x, ③y=2,④y=2x+1,其中為“B型直線”的是        .(填上所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是過圓錐曲線中心的任一條弦,是二次曲線上異于的任一點,且均與坐標軸不平行,則對于橢圓,有,類似的,對于雙曲線,有        。

查看答案和解析>>

同步練習冊答案