【題目】如圖所示,在三棱柱ABCA1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點(diǎn).

求證:(1)平面AB1F1平面C1BF;

(2)平面AB1F1⊥平面ACC1A1.

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)要證,只需證、,只需證、,而四邊形、四邊形皆為平行四邊形,所以得證;(2)要證,只需證,只需證、,其中易知可得,A1B1C1為正三角形可得,從而得證.

試題解析:(1)連接,在三棱柱中,由為棱的中點(diǎn),所以,四邊形是平行四邊形,所以,,.又在矩形中可得,, ,則,, ,所以

2)因?yàn)?/span>, ,所以,又因?yàn)?/span>A1B1C1為正三角形, 的中點(diǎn),所以,又,所以,因?yàn)?/span>,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 滿足 , 是數(shù)列 的前 項(xiàng)和.
(1)求數(shù)列 的通項(xiàng)公式 ;
(2)令 ,求數(shù)列 的前 項(xiàng)和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓, ,且圓心在直線上.

Ⅰ)求此圓的方程

(Ⅱ)求與直線垂直且與圓相切的直線方程.

(Ⅲ)若點(diǎn)為圓上任意點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,.

(1)證明:BCA1D;

(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,為了得到的圖象,只要將的圖象

A. 先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍,縱坐標(biāo)不變

B. 先向右平移個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍,縱坐標(biāo)不變

C. 先向左平移個(gè)單位長(zhǎng)度 ,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

D. 先向左平移個(gè)單位長(zhǎng)度, 再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一家庭今年一月份、二月份和三月份煤氣用量和支付費(fèi)用如下表所示:

月份

用氣量(立方米)

煤氣費(fèi)()

1

4

4.00

2

25

14.00

3

35

19.00

該市煤氣收費(fèi)的方法是:煤氣費(fèi)=基本費(fèi)+超額費(fèi)+保險(xiǎn)費(fèi).

若每月用氣量不超過最低額度A(A>4)立方米時(shí),只付基本費(fèi)3元和每戶每月定額保險(xiǎn)費(fèi)C(0<C≤5)元;若用氣量超過A立方米時(shí),超過部分每立方米付B元.

(1)根據(jù)上面的表格求A,B,C的值;

(2)記該家庭第四月份用氣為x立方米,求應(yīng)交的煤氣費(fèi)y元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有大小、形狀相同的紅、黑球各一個(gè),現(xiàn)一次有放回地隨機(jī)摸取3次,每次摸取一個(gè)球

)試問:一共有多少種不同的結(jié)果?請(qǐng)列出所有可能的結(jié)果;

)若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,求3次摸球所得總分為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣污染,又稱為大氣污染,是指由于人類活動(dòng)或自然過程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時(shí)間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來越關(guān)注環(huán)境保護(hù)問題.當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時(shí),空氣質(zhì)量級(jí)別為一級(jí),空氣質(zhì)量狀況屬于優(yōu);當(dāng)空氣污染指數(shù)為50~100時(shí),空氣質(zhì)量級(jí)別為二級(jí),空氣質(zhì)量狀況屬于良;當(dāng)空氣污染指數(shù)為100~150時(shí),空氣質(zhì)量級(jí)別為三級(jí),空氣質(zhì)量狀況屬于輕度污染;當(dāng)空氣污染指數(shù)為150~200時(shí),空氣質(zhì)量級(jí)別為四級(jí),空氣質(zhì)量狀況屬于中度污染;當(dāng)空氣污染指數(shù)為200~300時(shí),空氣質(zhì)量級(jí)別為五級(jí),空氣質(zhì)量狀況屬于重度污染;當(dāng)空氣污染指數(shù)為300以上時(shí),空氣質(zhì)量級(jí)別為六級(jí),空氣質(zhì)量狀況屬于嚴(yán)重污染.2017年8月18日某省x個(gè)監(jiān)測(cè)點(diǎn)數(shù)據(jù)統(tǒng)計(jì)如下:

空氣污染指數(shù)(單位:μg/m3)

[0,50]

(50,100]

(100,150]

(150,200]

監(jiān)測(cè)點(diǎn)個(gè)數(shù)

15

40

y

10

(1)根據(jù)所給統(tǒng)計(jì)表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;

(2)在空氣污染指數(shù)分別為50~100和150~200的監(jiān)測(cè)點(diǎn)中,用分層抽樣的方法抽取5個(gè)監(jiān)測(cè)點(diǎn),從中任意選取2個(gè)監(jiān)測(cè)點(diǎn),事件A兩個(gè)都為良發(fā)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱,,.

(1)求證:平面

(2)求證:平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案