某公園的門票規(guī)定為每人5元,團體票40元一張,每張團體票最多可入園10人.
(1)現(xiàn)有三個單位,游園人數(shù)分別為6,8,9.這三個單位分別怎樣買門票使總門票費最省?
(2)若三個單位的游園人數(shù)分別是16,18和19,又分別怎樣買門票使總門票費最。
(3)若游園人數(shù)為x人,你能找出一般買門票最省錢的規(guī)律嗎?
考點:根據(jù)實際問題選擇函數(shù)類型
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別根據(jù)游園人數(shù),比較單獨買和買團體票的費用,比較兩者的費用大小即可得到結(jié)論.
解答: 解:(1)①6×5=30元<40元,所以第一個單位應(yīng)該單獨買票;
②8×5=40元,則第二個單位單獨買票或買團體票都一樣;
③9×5=45元>40元,所以第三個單位買團體票比較省錢.
(2)因為公園的門票為每人5元,團體票40元一張,但最多只能入園10人,
所以可知:①第一個單位應(yīng)買一張團體票,另外單獨買6張票較為省錢;
②第二個單位買一張團體票,再單獨買8張門票;或者買兩張團體票花錢都是一樣的,都是80元.
③第三個單位應(yīng)買一張團體票,此時花費40,剩下9人,若單調(diào)買,則需要再花45元,若再買一張團體票,則只需花40,故此時買兩張團體票最省錢;
(3)設(shè)游園人數(shù)x的十位數(shù)字為a,個位數(shù)字為b,
則:當(dāng)b<8時,最省錢的買票方式是買a張團體票,再買b張單獨票;
當(dāng)b=8時,買團體票和買單獨票收費一樣;
當(dāng)b>8時,買(a+1)張團體票是最省錢的方式.
點評:本題主要考查方案型的數(shù)學(xué)問題,解題的關(guān)鍵是分情況來進行理解和討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果某公司的資金積累量每年平均比上一年增長16%,那么經(jīng)過x年可以增長到原來的y倍,則函數(shù)y=f(x)的圖象大致為圖中的( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)對定義域內(nèi)的任意x都滿足f[f(x)]=x,則稱f(x)為“不動點函數(shù)”;若存在x0使得f[f(x0)]=x0,則稱x0為函數(shù)y=f(x)的“不動點”
(Ⅰ)已知一次函數(shù)y=kx+b(k>0)是“不動點函數(shù)”,求實數(shù)k,b的值;
(Ⅱ)求證:二次函數(shù)y=ax2+c不可能是“不動點函數(shù)”
(Ⅲ)寫出正弦函數(shù)y=sinx的所有不動點(不必寫過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點,
OA
=(2cos2x,1),
OB
=(a,
3
asin2x+1-a),a為非零常數(shù).設(shè)y=
OA
OB

(1)求y關(guān)于x的函數(shù)解析式f(x)為
 

(2)當(dāng)x∈[0,
π
2
]時,f(x)的最大值為3,求a的值并指出f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+
y2
9
=1和動直線y=
3
2
x+m.
(1)當(dāng)動直線與橢圓相交時,求m取值范圍;
(2)當(dāng)動直線與橢圓相交時,證明動直線被橢圓截得的線段的中點在一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線3x2-y2=3,直線l過其右焦點F2,與雙曲線交于A,B兩點且傾斜角為45°,試問A,B兩點是否位于雙曲線的同一支上?并求出線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近年來,福建省大力推進海峽西岸經(jīng)濟區(qū)建設(shè),福州作為省會城市,在發(fā)展過程中,交通狀況一直倍受有關(guān)部門的關(guān)注,據(jù)有關(guān)統(tǒng)計數(shù)據(jù)顯示上午6點到10點,車輛通過福州市區(qū)二環(huán)路某一路段的用時y(分鐘)與車輛進入該路段的時刻t之間關(guān)系可近似地用如下函數(shù)給出:y=
-
1
8
t3+
3
2
t2-14(6≤t<9)
9lnt-t(9≤t≤10)
.求上午6點到10點,通過該路段用時最多的時刻.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)比較大。3.30.7和3.40.8;
(2)求值:27 
2
3
-2 log23×log2
1
8
+2log5
6+2
5
+
6-2
5
)-log54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

五位同學(xué)圍成一圈依次循環(huán)報數(shù),規(guī)定,第一位同學(xué)首次報出的數(shù)為1,第二位同學(xué)首次報出的數(shù)為2,之后每位同學(xué)所報出的數(shù)都是前兩位同學(xué)所報出數(shù)的乘積的個位數(shù)字,則第2013個被報出的數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案