已知A(
2
,0)、B(-
2
,0)兩點,動點P在y軸上的射影為Q,
PA
PB
=2
PQ
2
(1)求動點P的軌跡E的方程;
(2)設直線m過點A,斜率為k,當0<k<1時,曲線E的上支上有且僅有一點C到直線m的距離為
2
,試求k的值及此時點C的坐標.
考點:軌跡方程,直線與圓錐曲線的關系
專題:計算題,圓錐曲線的定義、性質與方程
分析:(1)設出點P的坐標(x,y),求出題中所需要的向量代入
PA
PB
=2
PQ
2,即可得到x,y的關系式,即得到動點P的軌跡E的方程.
(2)設直線m:y=k(x-
2
)(0<k<1),依題意,點C在與直線m平行且與m之間的距離為
2
的直線上,設此直線為m1:y=kx+b,利用曲線E的上支上有且僅有一點C到直線m的距離為
2
,可得
|
2
k+b|
k2+1
=
2
,把y=kx+b代入y2-x2=2,整理,△=4k2b2-4(k2-1)(b2-2)=0,即b2+2k2=2,求出k,b,由方程組
y=
2
5
5
x+
10
5
y2-x2=2
求出點C的坐標.
解答: 解:(1)設動點P的坐標為(x,y),
則點Q(0,y),
PQ
=(-x,0),
PA
=(
2
-x,-y),
PB
=(-
2
-x,-y),
PA
PB
=x2-2+y2
PA
PB
=2
PQ
2,∴x2-2+y2=2x2,即動點P的軌跡方程為y2-x2=2.
(2)設直線m:y=k(x-
2
)(0<k<1),
依題意,點C在與直線m平行且與m之間的距離為
2
的直線上,設此直線為m1:y=kx+b.
|
2
k+b|
k2+1
=
2
,即b2+2
2
kb=2.①
把y=kx+b代入y2-x2=2,整理,得(k2-1)x2+2kbx+(b2-2)=0,
則△=4k2b2-4(k2-1)(b2-2)=0,即b2+2k2=2.②
由①②,得k=
2
5
5
,b=
10
5

此時,由方程組
y=
2
5
5
x+
10
5
y2-x2=2
,解得x=2
2
,y=
10
,即C(2
2
,
10
).
點評:本題考查動點P的軌跡方程,考查向量知識的運用,考查直線與雙曲線的位置關系,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示的算法流程圖中,若a=4,則輸出的T值為
 
;若輸出的T=720,則a的值為
 
(a∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα-cosα=
2
2
,且α∈(-π,0),求sin2α-cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

學科王定義運算a*b=
a,a≤b
b,a>b
,則對x∈R,函數(shù)f(x)=x*(2-x)的解析式為f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓(x+1)2+y2=1和圓外一點P(0,2),過點P作圓的切線,則兩條切線夾角的正切值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是甲、乙兩種玉米生長高度抽樣數(shù)據(jù)的莖葉圖,可知(  )
A、.甲長得較整齊
B、乙長得較整齊
C、.一樣整齊
D、無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

國家收購某種農(nóng)產(chǎn)品的價格是120元/擔,其中征稅標準為每100元征8元(叫做稅率為8個百分點,即8%),計劃收購m萬擔,為了減輕農(nóng)民負擔,決定稅率降低x個百分點,預計收購量可增加2x個百分點.
(1)寫出稅收y(萬元)與x的函數(shù)關系式;
(2)要使此項稅收在稅率調(diào)整后,不低于原計劃的78%,試確定x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=ax-
1
a
(a>0,a≠1)的圖象可能是
 
.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,邊c=
2
+
6
,∠C=30°,求a+b的取值范圍.

查看答案和解析>>

同步練習冊答案