(2010•河?xùn)|區(qū)一模)已知定義在R上的函數(shù)f(x)是奇函數(shù),且f(2)=0,當(dāng)x>0時有
x•f′(x)-f(x)
x2
<0
,則不等式x2•f(x)>0的解集是( 。
分析:首先根據(jù)商函數(shù)求導(dǎo)法則,把
xf′(x)-f(x)
x2
<0
化為[
f(x)
x
]′<0;然后利用導(dǎo)函數(shù)的正負(fù)性,可判斷函數(shù)y=
f(x)
x
在(0,+∞)內(nèi)單調(diào)遞減;再由f(2)=0,易得f(x)在(0,+∞)內(nèi)的正負(fù)性;最后結(jié)合奇函數(shù)的圖象特征,可得f(x)在(-∞,0)內(nèi)的正負(fù)性.則x2f(x)>0?f(x)>0的解集即可求得.
解答:解:因?yàn)楫?dāng)x>0時,有
xf′(x)-f(x)
x2
<0
恒成立,即[
f(x)
x
]′<0恒成立,
所以
f(x)
x
在(0,+∞)內(nèi)單調(diào)遞減.
因?yàn)閒(2)=0,
所以在(0,2)內(nèi)恒有f(x)>0;在(2,+∞)內(nèi)恒有f(x)<0.
又因?yàn)閒(x)是定義在R上的奇函數(shù),
所以在(-∞,-2)內(nèi)恒有f(x)>0;在(-2,0)內(nèi)恒有f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
所以答案為(-∞,-2)∪(0,2).
故選B.
點(diǎn)評:本題主要考查函數(shù)求導(dǎo)法則及函數(shù)單調(diào)性與導(dǎo)數(shù)的關(guān)系,同時考查了奇偶函數(shù)的圖象特征.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河?xùn)|區(qū)一模)已知數(shù)列{an}為等差數(shù)列,且 a1+a7+a13=4,則a2+a12的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河?xùn)|區(qū)一模)已知函數(shù)f(x)=
x2+x,(x≥0)
-x2-x,(x<0)
 則不等式f(x)+2>0的解集是
(-2,+∞)
(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河?xùn)|區(qū)一模)設(shè)集合S={x|x2-2x<3},T={x|1-x2<0},則如圖中陰影表示的集合為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河?xùn)|區(qū)一模)已知f(x)=cos(x+φ)-sin(x+φ)為偶函數(shù),則φ可以取的一個值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•河?xùn)|區(qū)一模)設(shè)復(fù)數(shù)Z+i在映射下的象為
.
Z
•i.則復(fù)數(shù)-1+2i的原象為( 。

查看答案和解析>>

同步練習(xí)冊答案