(12分)已知橢圓C:以雙曲線的焦點(diǎn)為頂點(diǎn),其離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點(diǎn)分別為點(diǎn)A,B,點(diǎn)M是橢圓C上異于A,B的任意一點(diǎn).
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點(diǎn)P,Q,求線段PQ長度的最小值.
(1)(2)①證明見解析②

試題分析:(1)易知雙曲線的焦點(diǎn)為(-2,0),(2,0),離心率為,……2分
則在橢圓C中a=2,e=,
故在橢圓C中c=,b=1,所以橢圓C的方程為               ……4分
(2)①設(shè)M(x0,y0)(x0≠±2),由題易知A(-2,0),B(2,0),
則kMA,kMB,故kMA·kMB,        ……6分
點(diǎn)M在橢圓C上,則,即,
故kMA·kMB,即直線MA,MB的斜率之積為定值。                      ……8分
②解法一:設(shè)P(4,y1),Q(4,y2),則kMA=kPA,kMB=kBQ,……9分
由①得,即y1y2=-3,當(dāng)y1>0,y2<0時(shí),|PQ|=|y1-y2|≥2 ,當(dāng)且僅當(dāng)y1,y2=-時(shí)等號成立.……11分
同理,當(dāng)y1<0,y2>0時(shí),當(dāng)且僅當(dāng),y2時(shí),|PQ|有最小值. ……12分
解法二:設(shè)直線MA的斜率為k,則直線MA的方程為y=k(x+2),從而P(4,6k) ……9分
由①知直線MB的斜率為,則直線MB的方程為y=(x-2),
故得,故,當(dāng)且僅當(dāng)時(shí)等號成立,
即|PQ|有最小值.                                                  ……12分
點(diǎn)評:直線與圓錐曲線位置關(guān)系的題目是每年高考必考的題目,且一般都以壓軸題的形式出現(xiàn),所以難度較大,關(guān)鍵是運(yùn)算量比較大,要盡量應(yīng)用數(shù)形結(jié)合簡化運(yùn)算,還要細(xì)心求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓上的一動(dòng)點(diǎn),且與橢圓長軸兩頂點(diǎn)連線的斜率之積最小值為,則橢圓離心率為
A. B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

k為何值時(shí),直線y=kx+2和橢圓有兩個(gè)交點(diǎn) (   )
A.—<k<B.k>或k< —
C.—kD.k或k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成等腰直角三角形,則此橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是橢圓E: 的左右焦點(diǎn),P在直線上一點(diǎn),是底角為的等腰三角形,則橢圓E的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,過拋物線焦點(diǎn)的直線依次交拋物線與圓于點(diǎn)A、B、C、D,則的值是(   )

A.8              B.4             C.2                   D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于,設(shè)點(diǎn)的軌跡為。
(1)求曲線的方程;
(2)過點(diǎn)作兩條互相垂直的直線分別與曲線交于。
①以線段為直徑的圓過能否過坐標(biāo)原點(diǎn),若能求出此時(shí)的值,若不能說明理由;
②求四邊形面積的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案