【題目】如圖1,在梯形ABCD中,ADBCADDC,BC=2AD,四邊形ABEF是矩形,將矩形ABEF沿AB折起到四邊形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,MAF1的中點,如圖2.

(1)求證:BE1DC;

(2)求證:DM∥平面BCE1;

(3)判斷直線CDME1的位置關系,并說明理由.

【答案】(1)見解析;(2)見解析.(3)相交,理由詳見解析

【解析】試題分析:(1)由面面垂直性質(zhì)定理得BE1⊥平面ABCD,即得BE1DC;(2)根據(jù)AMBE1ADBC,可根據(jù)線面平行判定定理得線面平行,再根據(jù)面面平行判定定理得面面平行,即得結(jié)論(3)取BC的中點P,CE1的中點Q,易得MQCD,因此相交

試題解析:(1)證明 因為四邊形ABE1F1為矩形,

所以BE1AB.

因為平面ABCD⊥平面ABE1F1,

且平面ABCD∩平面ABE1F1AB,

BE1平面ABE1F1,

所以BE1⊥平面ABCD.

因為DC平面ABCD,

所以BE1DC.

(2)證明 因為四邊形ABE1F1為矩形,

所以AMBE1.

因為ADBC,ADAMABCBE1B,

AD平面ADM,AM平面ADM,

BC平面BCE1,BE1平面BCE1,

所以平面ADM∥平面BCE1.

因為DM平面ADM,

所以DM∥平面BCE1.

(3)解 直線CDME1相交,理由如下:

BC的中點P,CE1的中點Q,連接AP,PQ,QM,

所以PQBE1,且PQBE1.

在矩形ABE1F1中,MAF1的中點,

所以AMBE1,且AMBE1

所以PQAM,且PQAM.

所以四邊形APQM為平行四邊形,

所以MQAP,MQAP.

因為四邊形ABCD為梯形,PBC的中點,BC=2AD

所以ADPC,ADPC

所以四邊形ADCP為平行四邊形.

所以CDAPCDAP.

所以CDMQCDMQ.

所以四邊形CDMQ是平行四邊形.

所以DMCQ,即DMCE1.

因為DMCE1,

所以四邊形DME1C是以DMCE1為底邊的梯形,

所以直線CDME1相交.

點睛:立體幾何中折疊問題,要注重折疊前后垂直關系的變化,不變的垂直關系是解決問題的關鍵條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) .

(1)若函數(shù)上單調(diào)遞增,求的取值范圍;

(2)設函數(shù),若對任意的,都有 ,求的取值范圍;

(3)設,點是函數(shù)的一個交點,且函數(shù)在點處的切線互相垂直,求證:存在唯一的滿足題意,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的運動方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)

性別

0-2000

2001-5000

5001-8000

8001-10000

>10000

1

2

3

6

8

0

2

10

6

2

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

附:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x) (其中e是自然對數(shù)的底數(shù),常數(shù)a0)

(1)a1,求曲線在(0,f(0))處的切線方程;

(2)若存在實數(shù)x(a,2],使得不等式f(x)e2成立,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,點OAB上,且OBOCAB,PO⊥平面ABCDAPO,DAAOPO.

(1)求證:PB∥平面COD;

(2)求二面角OCDA的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)證明: ,直線都不是曲線的切線;

(2)若,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形所在平面垂直于直角梯形所在平面于直線,且

)設點為棱中點,求證: 平面

)線段上是否存在一點,使得直線與平面所成角的正弦值等于?若存在,試確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

(1)估計該天食堂利潤不少于760元的概率;

(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中點在原點,焦點在軸上,離心率,以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為.

(1)求橢圓的方程;

(2)過原點的兩條直線, ,交橢圓, , 四點,若,求四邊形的面積.

查看答案和解析>>

同步練習冊答案