分析 (Ⅰ)利用三角恒等變換化簡函數(shù)f(x)的解析式,從而求得f($\frac{π}{12}$)的值.
(Ⅱ)利用正弦函數(shù)的最值和單調(diào)性,求得f(x)的最大值和單調(diào)遞增區(qū)間.
解答 解:(Ⅰ)因為函數(shù)f(x)=2sinxcosx-2cos2x=sin2x-cos2x-1,
所以,f($\frac{π}{12}$)=sin$\frac{π}{6}$-cos$\frac{π}{6}$-1=-$\frac{\sqrt{3}+1}{2}$.
(Ⅱ)f(x)=sin2x-cos2x-1=$\sqrt{2}$sin(2x-$\frac{π}{4}$)-1,
當sin(2x-$\frac{π}{4}$)=1 時,函數(shù)f(x)的最大值為$\sqrt{2}$-1.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.
點評 本題主要考查三角恒等變換,正弦函數(shù)的最值和單調(diào)性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{2+\sqrt{3}}{4}$ | C. | $\frac{1+\sqrt{3}}{4}$ | D. | $\frac{1+\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
日 期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差x(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
商店名稱 | A | B | C | D | E |
銷售額x/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額y/百萬元 | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com