9.已知函數(shù)f(x)=2sinxcosx-2cos2x.
(Ⅰ)求f($\frac{π}{12}$);
(Ⅱ)求f(x)的最大值和單調(diào)遞增區(qū)間.

分析 (Ⅰ)利用三角恒等變換化簡函數(shù)f(x)的解析式,從而求得f($\frac{π}{12}$)的值.
(Ⅱ)利用正弦函數(shù)的最值和單調(diào)性,求得f(x)的最大值和單調(diào)遞增區(qū)間.

解答 解:(Ⅰ)因為函數(shù)f(x)=2sinxcosx-2cos2x=sin2x-cos2x-1,
所以,f($\frac{π}{12}$)=sin$\frac{π}{6}$-cos$\frac{π}{6}$-1=-$\frac{\sqrt{3}+1}{2}$.    
(Ⅱ)f(x)=sin2x-cos2x-1=$\sqrt{2}$sin(2x-$\frac{π}{4}$)-1,
當sin(2x-$\frac{π}{4}$)=1 時,函數(shù)f(x)的最大值為$\sqrt{2}$-1.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.

點評 本題主要考查三角恒等變換,正弦函數(shù)的最值和單調(diào)性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知$\overrightarrow a$=(3,2),$\overrightarrow b$=(-1,2),$\overrightarrow c$=(5,6).
(1)求$3\overrightarrow a$+$\overrightarrow b$-2$\overrightarrow c$;
(2)求滿足$\overrightarrow c$=m$\overrightarrow a$+n$\overrightarrow b$的實數(shù)m,n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=sin($\frac{π}{2}$+x)cos($\frac{π}{6}$-x)的最大值為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{2+\sqrt{3}}{4}$C.$\frac{1+\sqrt{3}}{4}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,分別記錄了3月1日至3月5日的每天晝夜溫差(℃)與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù)(顆)如表:
日   期3月1日3月2日3月3日3月4日3月5日
溫差x(°C)101113128
發(fā)芽數(shù)y(顆)2325302616
(Ⅰ)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率;
(Ⅱ)請根據(jù)3月2日至3月4日的數(shù)據(jù),求發(fā)芽數(shù)y關于晝夜溫差x的線性回歸方程$\hat y$=$\hat b$x+$\hat a$.
參考公式:回歸直線的方程是$\hat y$=$\hat b$x+$\hat a$,其中$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{(x_i^{\;}-\overline x)}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.10雙互不相同的鞋子混裝在一只口袋中,從中任意取出4只,試求各有多少種情況出現(xiàn)以下結(jié)果:
(1)4只鞋子沒有成雙的;
(2)4只恰好成兩雙;
(3)4只鞋子中有2只成雙,另2只不成雙.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如表:
商店名稱ABCDE
銷售額x/千萬元35679
利潤額y/百萬元23345
(1)畫出銷售額和利潤額的散點圖;
(2)若銷售額和利潤額具有相關關系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程;
(3)據(jù)(2)的結(jié)果估計當銷售額為1億元時的利潤額.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若A(3,$\frac{π}{3}}$),B(4,-$\frac{π}{6}}$),則S△AOB=6.(其中O是極點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求下列每對集合的交集:
(1)A={x|x2+2x-3=0},B={x|x2+4x+3=0};
(2)C={1,3,5,7},D={2,4,6,8}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x<0}\\{-{x}^{2}+2x+a,x>0}\end{array}\right.$是奇函數(shù),則a=-3.

查看答案和解析>>

同步練習冊答案