(本題滿分14分)
對(duì)于函數(shù),若存在成立,則稱的不動(dòng)點(diǎn).如果函數(shù)
有且只有兩個(gè)不動(dòng)點(diǎn)0,2,且
(1)求函數(shù)的解析式;
(2)已知各項(xiàng)不為零的數(shù)列,求數(shù)列通項(xiàng);
(3)如果數(shù)列滿足,求證:當(dāng)時(shí),恒有成立.
(本小題滿分14分)
解:設(shè)得:由違達(dá)定理得:
解得代入表達(dá)式,由
得不止有兩個(gè)不動(dòng)點(diǎn),
………………………………………5分
(2)由題設(shè)得 (A)
且 (B)
由(A)(B)得:
解得(舍去)或;由,若這與矛盾,
,即{是以1為首項(xiàng),1為公差的等差數(shù)列,
; ………………………………………………………………10分
(3)證法(一):運(yùn)用反證法,假設(shè)則由(1)知
∴,而當(dāng)
這與假設(shè)矛盾,故假設(shè)不成立,∴.………………………………………14分
證法(二):由
得<0或結(jié)論成立;
若,此時(shí)從而
即數(shù)列{}在時(shí)單調(diào)遞減,由,可知上成立.………………………………………………………………………………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過(guò)作垂直軸于,動(dòng)點(diǎn)滿足。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使
;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com