【題目】已知底面為邊長為2的正方形,側棱長為1的直四棱柱ABCD﹣A1B1C1D1中,P是面A1B1C1D1上的動點.給出以下四個結論中,正確的個數(shù)是( ) ①與點D距離為 的點P形成一條曲線,則該曲線的長度是 ;
②若DP∥面ACB1 , 則DP與面ACC1A1所成角的正切值取值范圍是 ;
③若 ,則DP在該四棱柱六個面上的正投影長度之和的最大值為
A.0
B.1
C.2
D.3

【答案】C
【解析】解:如圖,①正確,與點D距離為 的點P形成以D1為圓心,半徑為 圓弧MN,長度為 = ; ②錯誤,因為面A1DC1∥面ACB1 , 所以點P必須在面對角線A1C1上運動,當P在A1(或C1)時,DP與面ACC1A1所成角∠DA1O(或∠DC1O)的正切值為 最小,當P在O1時,DP與面ACC1A1所成角∠DO1O的正切值為 最大,所以正切值取值范圍是 ;
③正確,設P(x,y,1),則x2+y2+1=3,即x2+y2=2,DP在前后、左右、上下面上的正投影長分別為 ,所以六個面上的正投影長度之和為 ,當且僅當P在O1時取等號.
故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga|x+1|(a>0且a≠1),當x∈(0,1)時,恒有f(x)<0成立,則函數(shù)g(x)=loga(﹣ x2+ax)的單調遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個棱錐的三視圖如圖,則該棱錐的全面積(單位:cm2)為(
A.48+12
B.48+24
C.36+12
D.36+24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+x+1(a>0)的圖象與x軸兩個交點的橫坐標分別為x1 , x2
(1)證明:(1+x1)(1+x2)=1;
(2)證明:x1<﹣1,x2<﹣1;
(3)若x1 , x2滿足不等式|lg |≤1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中值域為(0,+∞)的是( )
A.
B.y=x+ ({x>0})
C.y=
D.y=x﹣ (x≥1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) ,則下列結論錯誤的是( )
A.f(x)是偶函數(shù)
B.方程f(f(x))=x的解為x=1
C.f(x)是周期函數(shù)
D.方程f(f(x))=f(x)的解為x=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy內,動點P到定點F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為
(1)求動點P的軌跡C的方程;
(2)設點A、B是軌跡C上兩個動點,直線OA、OB與軌跡C的另一交點分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問四邊形ABA1B1的面積S是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設D是圖中邊長分別為1和2的矩形區(qū)域,E是D內位于函數(shù)y= (x>0)圖象下方的區(qū)域(陰影部分),從D內隨機取一個點M,則點M取自E內的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)= (x>0).
(1)求f(x)的最大值;
(2)證明:對任意實數(shù)a、b,恒有f(a)<b2﹣3b+

查看答案和解析>>

同步練習冊答案