【題目】用另一種形式表示下列集合:
(1){絕對值不大于3的整數(shù)};
(2){所有被3整除的數(shù)};
(3){x|x=|x|,x∈Z且x<5};
(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經(jīng)過,且橢圓的離心率為.
(1)求橢圓的方程;
(2)設斜率存在的直線與橢圓交于兩點,為坐標原點,,且與圓心為的定圓相切.直線:()與圓交于兩點,.求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 是雙曲線 的右焦點,過點 作 的一條漸近線的垂線,垂足為 ,線段 與 相交于點 ,記點 到 的兩條漸近線的距離之積為 ,若 ,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩校高三年級學生某次期末聯(lián)考地理成績情況,從這兩學校中分別隨機抽取30名高三年級的地理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:
(Ⅰ)若乙校高三年級每位學生被抽取的概率為0.15,求乙校高三年級學生總?cè)藬?shù);
(Ⅱ)根據(jù)莖葉圖,分析甲、乙兩校高三年級學生在這次聯(lián)考中地理成績;
(Ⅲ)從樣本中甲、乙兩校高三年級學生地理成績不及格(低于60分為不及格)的學生中隨機抽取2人,求至少抽到一名乙校學生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, 平面,點, 分別為, 的中點,且, .
(1)證明: 平面;
(2)設直線與平面所成角為,當在內(nèi)變化時,求二面角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U為R,集合A={x|0<x≤2},B={x|x<-3或x>1}.
求:(1)A∩B;(2)(UA)∩(UB);(3)U(A∪B).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個關于圓錐曲線的命題中:
①雙曲線與橢圓有相同的焦點;
②在平面內(nèi),設為兩個定點,為動點,且,其中常數(shù)為正實數(shù),則動點的軌跡為橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④過雙曲線的右焦點作直線交雙曲線于兩點,若,則這樣的直線有且僅有3條.其中真命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量.
(2)當產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量.
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線 的左、右焦點分別為F1、F2,直線l過F2且與雙曲線交于A、B兩點.
(1)若l的傾斜角為 , 是等邊三角形,求雙曲線的漸近線方程;
(2)設 ,若l的斜率存在,且|AB|=4,求l的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com