【題目】已知函數(shù),.
(1)函數(shù)在點(diǎn)處的切線的斜率為2,求的值;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)有兩個(gè)不同極值點(diǎn)為、,證明:.
【答案】(1);(2)當(dāng)時(shí),在單調(diào)遞增;當(dāng)時(shí),在,單調(diào)遞增,在單調(diào)遞減;(3)證明見解析
【解析】
(1)求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義即可求解.
(2)令,化簡,判別式,討論的正負(fù),從而確定的正負(fù),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可求解.
(3)由(2)可知,,,由,,求出,利用換元法令,將不等式轉(zhuǎn)化為,不妨設(shè),利用導(dǎo)數(shù)證出函數(shù)在單調(diào)遞增,由即可證出.
(1),,∴
(2)令即,
當(dāng)時(shí),,,在單調(diào)遞增
當(dāng)時(shí),,,,
,,
在,單調(diào)遞增
在單調(diào)遞減.
(3)由(2)可知,,,
,
令
則,只需證明
,(只需證明即可)
,
∴,在單調(diào)遞增
,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來越受到社會(huì)的關(guān)注.一些高中已經(jīng)開始嘗試開設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調(diào)查學(xué)生成績與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計(jì) | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計(jì) | 21 | 29 | 50 |
(1)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有99%的把握認(rèn)為“學(xué)生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說明理由;
(2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績優(yōu)秀和成績不夠優(yōu)秀的學(xué)生中隨機(jī)抽取5名學(xué)生作為代表,從5名學(xué)生代表中再任選2名學(xué)生繼續(xù)調(diào)查,求這2名學(xué)生成績至少有1人優(yōu)秀的概率.
參考附表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足:a1=1,且當(dāng)n∈N*時(shí),an3+an2(1﹣an+1)+1=an+1.
(1)求a2,a3的值;
(2)比較an與an+1的大小,并證明你的結(jié)論.
(3)若bn=(1),其中n∈N*,證明:0<b1+b2+……+bn<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計(jì).這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);
生二孩 | 不生二孩 | 合計(jì) | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計(jì) | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機(jī)抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學(xué)期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,短軸長為2,過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、(點(diǎn)在點(diǎn),之間).
(1)求橢圓的方程;
(2)若,求實(shí)數(shù)的取值范圍;
(3)若射線交橢圓于點(diǎn)(為原點(diǎn)),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題的展開式中,僅有第7項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)為495;命題隨機(jī)變量服從正態(tài)分布,且,則.現(xiàn)給出四個(gè)命題:①,②,③,④,其中真命題的是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當(dāng)x∈(1,)時(shí),f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的極大值點(diǎn);
(2)當(dāng),時(shí),若過點(diǎn)存在3條直線與曲線相切,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線交于、兩點(diǎn),是坐標(biāo)原點(diǎn),.
(1)求線段中點(diǎn)的軌跡的方程;
(2)設(shè)直線與曲線交于、兩點(diǎn),,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com