【題目】已知函數(shù),.

1)函數(shù)在點(diǎn)處的切線的斜率為2,求的值;

2)討論函數(shù)的單調(diào)性;

3)若函數(shù)有兩個(gè)不同極值點(diǎn)為、,證明:.

【答案】1;(2)當(dāng)時(shí),在單調(diào)遞增;當(dāng)時(shí),在,單調(diào)遞增,在單調(diào)遞減;(3)證明見解析

【解析】

1)求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義即可求解.

2)令,化簡,判別式,討論的正負(fù),從而確定的正負(fù),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可求解.

3)由(2)可知,,,由,求出,利用換元法令,將不等式轉(zhuǎn)化為,不妨設(shè),利用導(dǎo)數(shù)證出函數(shù)單調(diào)遞增,由即可證出.

1,,∴

2)令,

當(dāng)時(shí),,單調(diào)遞增

當(dāng)時(shí),,,

,

,單調(diào)遞增

單調(diào)遞減.

3)由(2)可知,,

,

,只需證明

,(只需證明即可)

,

,單調(diào)遞增

,得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來越受到社會(huì)的關(guān)注.一些高中已經(jīng)開始嘗試開設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調(diào)查學(xué)生成績與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績優(yōu)秀

成績不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

1)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有99%的把握認(rèn)為“學(xué)生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說明理由;

2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績優(yōu)秀和成績不夠優(yōu)秀的學(xué)生中隨機(jī)抽取5名學(xué)生作為代表,從5名學(xué)生代表中再任選2名學(xué)生繼續(xù)調(diào)查,求這2名學(xué)生成績至少有1人優(yōu)秀的概率.

參考附表:

PK2k

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

參考公式,其中na+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足:a11,且當(dāng)nN*時(shí),an3+an2(1an+1)+1an+1

1)求a2a3的值;

2)比較anan+1的大小,并證明你的結(jié)論.

3)若bn=(1),其中nN*,證明:0b1+b2+……+bn2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計(jì).200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.

1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);

生二孩

不生二孩

合計(jì)

頭胎為女孩

60

頭胎為男孩

合計(jì)

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機(jī)抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學(xué)期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,短軸長為2,過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)(點(diǎn)在點(diǎn),之間).

1)求橢圓的方程;

2)若,求實(shí)數(shù)的取值范圍;

3)若射線交橢圓于點(diǎn)為原點(diǎn)),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題的展開式中,僅有第7項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)為495;命題隨機(jī)變量服從正態(tài)分布,且,則.現(xiàn)給出四個(gè)命題:,,,其中真命題的是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxsinx+axa0).

1)若a1,求證:當(dāng)x1,)時(shí),fx)<2x1

2)若fx)在(0,2π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的極大值點(diǎn);

2)當(dāng)時(shí),若過點(diǎn)存在3條直線與曲線相切,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線交于、兩點(diǎn),是坐標(biāo)原點(diǎn),.

1)求線段中點(diǎn)的軌跡的方程;

2)設(shè)直線與曲線交于兩點(diǎn),,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案