(2012•道里區(qū)三模)如圖,設(shè)D是圖中邊長分別為1和2的矩形區(qū)域,E是D內(nèi)位于函數(shù)y=
1
x
(x>0)圖象下方的區(qū)域(陰影部分),從D內(nèi)隨機(jī)取一個點M,則點M取自E內(nèi)的概率為(  )
分析:先由積分的知識求解陰影部分的面積,然后可求試驗的區(qū)域所對應(yīng)的矩形的面積,由幾何概率的求解公式代入可求
解答:解:本題是幾何概型問題,
區(qū)域E的面積為:S=2×
1
2
+
1
1
2
1
x
dx
=1+ln
x|
1
1
2
=1-ln
1
2
=1+ln2
∴“該點在E中的概率”事件對應(yīng)的區(qū)域面積為 1+ln2,
矩形的面積為2
由集合概率的求解可得P=
1+ln2
2

故選C
點評:本題綜合考查了反比例函數(shù)的圖象,幾何概型,及定積分在求面積中的應(yīng)用,考查計算能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當(dāng)PD=
2
AB
,且直線AE與平面PBD成角為45°時,確定點E的位置,即求出
PE
EB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)在△ABC中,角A、B、C所對的邊分別為a、b、c,且acosB-bcosA=
1
2
c
,當(dāng)tan(A-B)取最大值時,角C的值為
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)已知函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,則下列關(guān)于函數(shù)y=f[f(x)]+1的零點個數(shù)的判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)已知復(fù)數(shù)z1=1-
3
i
z2=2
3
-2i
,則
.
z1
.
z2
等于( 。

查看答案和解析>>

同步練習(xí)冊答案