【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空軍能力與性別有關(guān)?
(Ⅱ)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在5—7分鐘,乙每次解答一道幾何題所用的時間在6—8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(Ⅲ)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(I)有的把握認(rèn)為視覺和空軍能力與性別有關(guān);(II);(III)分布列見解析,.
【解析】試題分析:(I)代入公式,計算,所以有的把握認(rèn)為有關(guān);(II)將問題轉(zhuǎn)化為線性規(guī)劃的為題,兩者解題事件滿足可行域,且滿足“”其中甲、乙解答一道幾何題的時間分別為、分鐘.畫出可行域,利用幾何概型的知識可求得概率為;(III)基本事件的總數(shù)為種,分別求出甲、乙兩人沒有一個人被抽到;恰有一人被抽到、兩人都被抽到的概率,由此得到分布列和數(shù)學(xué)期望.
試題解析:
(Ⅰ)由表中數(shù)據(jù)得的觀測值
所以根據(jù)統(tǒng)計有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān).
(Ⅱ)設(shè)甲、乙解答一道幾何題的時間分別為、分鐘,則基本事件滿足的區(qū)域?yàn)?/span>(如圖所示)
設(shè)事件為“乙比甲先做完此道題”則滿足的區(qū)域?yàn)?/span>
由幾何概型即乙比甲先解答完的概率為
(Ⅲ)由題可知在選擇做幾何題的8名女生中任意抽取兩人,抽取方法有種,其中甲、乙兩人沒有一個人被抽到有種;恰有一人被抽到有種;兩人都被抽到有種
可能取值為0,1,2,,
,
的分布列為:
.
0 | 1 | 2 | |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個焦點(diǎn)為, 是橢圓上的一個點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為, ()是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線段中點(diǎn),直線交直線于點(diǎn), 為線段的中點(diǎn),如果的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)和短軸的兩個頂點(diǎn)構(gòu)成的四邊形是一個正方形,且其周長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線與橢圓相交于兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,若點(diǎn)總在以線段為直徑的圓內(nèi),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, , , .
(Ⅰ)證明: ;
(Ⅱ)若,在棱上是否存在點(diǎn),使得二面角的大小為,若存在,求的長,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,
(1)求函數(shù)的最小正周期及取得最大值時對應(yīng)的x的值;
(2)在銳角三角形ABC中,角A、B、C的對邊為a、b、c,若,求三角形ABC面積的最大值并說明此時該三角形的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求證: ;
(Ⅲ)判斷曲線是否位于軸下方,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個學(xué)校高三年級分別有1100人,1000人,為了了解兩個學(xué)校全體高三年級學(xué)生在該地區(qū)二?荚嚨臄(shù)學(xué)成績清況,采用分層抽樣方法從兩個學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:
甲校:
乙校:
(1)計算的值;
(2)若規(guī)定考試成績在內(nèi)為優(yōu)秀,請根據(jù)樣本估計乙校數(shù)學(xué)成績的優(yōu)秀率;
(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異.
附: ; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(1)若函數(shù)在上單調(diào)遞增,求的取值范圍;
(2)設(shè)函數(shù),若對任意的,都有 ,求的取值范圍;
(3)設(shè),點(diǎn)是函數(shù)與的一個交點(diǎn),且函數(shù)與在點(diǎn)處的切線互相垂直,求證:存在唯一的滿足題意,且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com