數(shù)列{an}的前n項(xiàng)和記為Sn,前kn項(xiàng)和記為
Skn(n,k∈N*),對(duì)給定的常數(shù)k,若是與n無(wú)關(guān)的非零常數(shù)t=f(k),則稱該數(shù)列{an}是“k類(lèi)和科比數(shù)列”,
(1)已知Sn=an-(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,數(shù)列an=2cn,求證數(shù)列{cn}是一個(gè)“1類(lèi)和科比數(shù)列”;
(3)、設(shè)等差數(shù)列{bn}是一個(gè)“k類(lèi)和科比數(shù)列”,其中首項(xiàng)b1,公差D,探究b1
與D的數(shù)量關(guān)系,并寫(xiě)出相應(yīng)的常數(shù)t=f(k);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
Tn |
ak |
SnTn |
Tn(1)+Tn(2)+…+Tn(n) |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
pn-q |
p |
(p-1)(p-q) |
1 |
pn |
1 |
(2n-1)(2n+1-1) |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
3 |
2 |
3 |
1 |
4 |
2 |
4 |
3 |
4 |
1 |
5 |
2 |
5 |
3 |
5 |
4 |
5 |
1 |
n |
2 |
n |
n-1 |
n |
3 |
8 |
n2+n |
4 |
5 |
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com