14.某校高二年級共有學(xué)生1000名,其中走讀生750名,住宿生250名,現(xiàn)采用分層抽樣的方法從該年級抽取100名學(xué)生進行問卷調(diào)查.根據(jù)問卷取得了這100名學(xué)生每天晚上有效學(xué)習(xí)時間(單位:分鐘)的數(shù)據(jù),按照以下區(qū)間分為八組:①[0,30),②[30,60),③[60,90),④[90,120),…得到頻率分布直方圖(部分)如圖.

(Ⅰ)如果把“學(xué)生晚上有效時間達到兩小時”作為是否充分利用時間的標準,對抽取的100名學(xué)生,完成下列2×2列聯(lián)表;并判斷是否有95%的把握認為學(xué)生利用時間是否充分與走讀、住宿有關(guān)?
利用時間充分利用時間不充分總計
走讀生50
住宿生10
總計60100
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
參考列表:

P(K2≥k0
0.500.400.250.150.100.050.025

k0
0.4550.7081.3232.0722.7063.8415.024
(Ⅱ)若在第①組、第②組、第③組中共抽出3人調(diào)查影響有效利用時間的原因,記抽到“有效學(xué)習(xí)時間少于60分鐘”的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

分析 (1)把“學(xué)生晚上有效時間達到兩小時”作為是否充分利用時間的標準,對抽取的100名學(xué)生,完成下列2×2列聯(lián)表,求出K2,由K2>3.841,得到有95%的把握認為學(xué)生利用時間是否充分與走讀、住宿有關(guān).
(2)設(shè)第i組的頻率為Pi(i=1,2,…,8),推導(dǎo)出第①組1人,第②組4人,第③組10人,從而X的所有可能取值為0,1,2,3,$P(X=i)=\frac{{C_5^iC_{10}^{3-i}}}{{C_{15}^3}}(i=0,1,2,3)$,由此能求出X的分布列和數(shù)學(xué)期望.

解答 解:(1)把“學(xué)生晚上有效時間達到兩小時”作為是否充分利用時間的標準,對抽取的100名學(xué)生,完成下列2×2列聯(lián)表如下:

 利用時間充分利用時間不充分總計
走讀生502575
住宿生101525
總計6040100
…(2分)
K2=$\frac{100×(50×15-25×10)2}{75×25×40×60}$≈5.556 …(4分)
由于K2>3.841,所以有95%的把握認為學(xué)生利用時間是否充分與走讀、住宿有關(guān)…(6分)
(2)設(shè)第i組的頻率為Pi(i=1,2,…,8),
則由圖可知:P1=$\frac{1}{3000}$×30=$\frac{1}{100}$,P2=$\frac{1}{750}$×30=$\frac{4}{100}$,P3=$\frac{1}{300}$×30=$\frac{10}{100}$,
∴第①組1人,第②組4人,第③組10人.…(8分)
則X的所有可能取值為0,1,2,3,$P(X=i)=\frac{{C_5^iC_{10}^{3-i}}}{{C_{15}^3}}(i=0,1,2,3)$,
∴$P(X=0)=\frac{{C_5^0C_{10}^3}}{{C_{15}^3}}=\frac{24}{91}$,
$P(X=1)=\frac{{C_5^1C_{10}^2}}{{C_{15}^3}}=\frac{45}{91},P(X=2)=\frac{{C_5^2C_{10}^1}}{{C_{15}^3}}=\frac{20}{91},P(X=3)=\frac{{C_5^3C_{10}^0}}{{C_{15}^3}}=\frac{2}{91}$…..(10分)
∴X的分布列為:
P0123
X$\frac{24}{91}$$\frac{45}{91}$$\frac{20}{91}$$\frac{2}{91}$
$E(X)=0×\frac{24}{91}+1×\frac{45}{91}+2×\frac{20}{91}+3×\frac{2}{91}=1$.…..(12分)

點評 本題考查獨立性質(zhì)檢驗的應(yīng)用,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時要認真審題,注意超幾何分布的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在用數(shù)學(xué)歸納法證明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$≥$\frac{13}{24}$(n≥2)的過程中,當由n=k推到n=k+1時,不等式左邊應(yīng)( 。
A.增加了$\frac{1}{2(k+1)}$B.增加了$\frac{1}{2k+1}$+$\frac{1}{2k+2}$
C.增加了$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,但減少了$\frac{1}{k+1}$D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題“?x∈R,|x|+x2≥0”的否定是( 。
A.?x0∈R,|x0|+x${\;}_{0}^{2}$≥0B.?x0∈R,|x0|+x${\;}_{0}^{2}$<0
C.?x∈R,|x|+x2<0D.?x∈R,|x|+x2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知橢圓 C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左頂點為A1,右焦點為F2,過點 F2作垂直于x軸的直線交橢圓C于M、N兩點,直線 A1M的斜率為$\frac{1}{2}$
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若橢圓C的長軸長為4,點P(1,1),則在橢圓C上是否存在不重合兩點D,E,使$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OD}$+$\overrightarrow{OE}$)(O是坐標原點),若存在,求出直線DE的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A={x|$\frac{x+1}{x-1}$≤0},B={-1,0,1},則card(A∩B)=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求證2sinαcosβ=sin(α+β)+sin(α-β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=AC=2BC,∠ACB=90°.
(Ⅰ)求證:AC1⊥A1B;
(Ⅱ)求直線AB與平面A1BC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以下說法錯誤的是( 。
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.“x=-1”是“x2-5x-6=0”的根的逆命題為假命題
C.若p∧q為假命題,則p、q均為假命題
D.若命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,則x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{x-1}{{e}^{x}},x≥a}\\{-x-1,x<a}\end{array}\right.$,g(x)=f(x)-b,若存在實數(shù)b,使得函數(shù)g(x)恰有3個零點,則實數(shù)a的取值范圍為(-$\frac{1}{{e}^{2}}$-1,2).

查看答案和解析>>

同步練習(xí)冊答案