精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=2x2-ax+1,存在數學公式,使得f(sin?)=f(cos?),則實數a的取值范圍是________.


分析:利用條件化簡可得2(sinφ+cosφ)=a,利用輔助角公式及角的范圍,即可求實數a的取值范圍.
解答:根據題意:2sin2φ-asinφ+1=2cos2φ-acosφ+1,即:2(sin2φ-cos2φ)=a(sinφ-cosφ)
即:2(sinφ+cosφ)(sinφ-cosφ)=a(sinφ-cosφ),
因為:φ∈(),所以sinφ-cosφ≠0
故:2(sinφ+cosφ)=a,即:a=2sin(
由φ∈()得:∈(π/2,3π/4),也就是:sin()∈(,1)
所以:a=2sin()∈(2,2
故答案為:
點評:本題考查三角函數的化簡,考查函數與方程的綜合運用,考查輔助角公式的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案