已知橢圓的離心率為,短軸的一個端點到右焦點的距離為2,
(1)試求橢圓M的方程;
(2)若斜率為的直線l與橢圓M交于C、D兩點,點為橢圓M上一點,記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請證明你的結(jié)論.
【答案】分析:(1)由橢圓的離心率為,短軸的一個端點到右焦點的距離為2,能求出橢圓M的方程.
(2)設直線l的方程為:,C(x1,y1),D(x2,y2),聯(lián)立直線l的方程與橢圓方程,得x2+bx+b2-3=0,當△>0時,即b2-4(b2-3)>0,直線l與橢圓有兩交點,由韋達定理,得:,由此能夠得到k1+k2為定值.
解答:解:∵橢圓的離心率為,短軸的一個端點到右焦點的距離為2,
∴a=2,c=1,b=,
∴橢圓M的方程為
(2)設直線l的方程為:,C(x1,y1),D(x2,y2),
聯(lián)立直線l的方程與橢圓方程,得:

①代入②,得:,
化簡,得:x2+bx+b2-3=0,③
當△>0時,即b2-4(b2-3)>0,
即|b|<2時,直線l與橢圓有兩交點,
由韋達定理,得:
=,
=,
∴k1+k2=+
=
==0,
∴k1+k2為定值.
點評:本題考查直線與橢圓的位置關(guān)系的綜合應用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強,難度大,有一定的探索性,對數(shù)學思維能力要求較高,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準線方程為x=±8,求這個橢圓的標準方程;
(2)假設你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案