【題目】命題p:實數(shù)x滿足,命題:實數(shù)x滿足
(1)若,且為真,求實數(shù)的取值范圍;
(2)若,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】
試題首先根據(jù)命題的要求,解出命題p和命題q所表示的含義,第一步a=1,解出一元二次不等式得出x的范圍,再解不等式組得出命題q所表示的x的范圍,由于p且q為真,說明p、q均為真,求出交集;第二步,q是非p的充分條件,先求出非p所表示的集合,根據(jù)q所表示的集合是非p所表示的集合的子集,求出實數(shù)a的范圍.
試題解析:
(1)由于a=1,則x2-4ax+3a2<0x2-4x+3<01<x<3.所以p:1<x<3,解不等式組 得2<x≤3,所以q:2<x≤3,由于p∧q為真,所以p,q均是真命題,解不等式組 得2<x<3,所以實數(shù)x的取值范圍是(2,3).
(2):x2-4ax+3a2≥0,a>0,x2-4ax+3a2≥0(x-a)(x-3a)≥0x≤a或x≥3a,所以:x≤a或x≥3a,設(shè)A={x|x≤a或x≥3a},由(1)知q:2<x≤3,設(shè)B={x|2<x≤3}.由于q,所以,所以3≤a或3a≤2,即0<a≤或a≥3,所以實數(shù)a的取值范圍是 ∪[3,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=sinωx+cosωx(ω>0)的部分圖象如圖所示.
(1)求ω的值;
(2)若x∈(-,),求f(x)的值域;
(3)若方程3[f(x)]2-f(x)+m=0在x∈(-,)內(nèi)有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側(cè)面PAD⊥底面ABCD,且△PAD是以AD為底的等腰三角形.
(Ⅰ)證明:AD⊥PB;
(Ⅱ)若四棱錐P-ABCD的體積等于,平面CMN∥平面PAD,且分別交PB,AB于點M,N,試確定M,N的位置,并求△CMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中, , , , 分別是棱, , , 的中點,點, 分別在棱, 上移動,且.
(1)當時,證明:直線平面;
(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實數(shù),.
(1)證明:不論為何實數(shù),f(x)均為增函數(shù);
(2)試確定的值,使f(-x)+ f(x)=0成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列,其中的公差不為0.設(shè)是數(shù)列的前n項和.若,,是數(shù)列的前3項,且.
(1)求數(shù)列和的通項公式;
(2)若數(shù)列為等差數(shù)列,求實數(shù)t;
(3)構(gòu)造數(shù)列,,,,,,,,,…,,,,…,,….若該數(shù)列前n項和,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.
(1)求實數(shù)a,b的值;
(2)設(shè),若不等式在區(qū)間上恒成立,求實數(shù)k的取值范圍;
(3)設(shè)),若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且是定義域為R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A.先把高二年級的2000名學(xué)生編號:1到2000,再從編號為1到50的學(xué)生中隨機抽取1名學(xué)生,其編號為,然后抽取編號為,,,……的學(xué)生,這種抽樣方法是系統(tǒng)抽樣法.
B.一組數(shù)據(jù)的方差為,平均數(shù)為,將這組數(shù)據(jù)的每一個數(shù)都乘以2,所得的一組新數(shù)據(jù)的方差和平均數(shù)為,.
C.若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1.
D.若一組數(shù)據(jù)1,,3的平均數(shù)是2,則該組數(shù)據(jù)的方差是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com