精英家教網 > 高中數學 > 題目詳情
若傾斜角為
π
4
的直線l通過拋物線y2=4x的焦點且與拋物線相交于M、N兩點,則線段MN的長為( 。
A、
13
B、8
C、16
D、8
2
分析:先根據題意寫出直線的方程,再將直線的方程與拋物線y2=4x的方程組成方程組,消去y得到關于x的二次方程,最后利用根與系數的關系結合拋物線的定義即可求線段AB的長.
解答:解:設A(x1,y1),B(x2,y2),A,B到準線的距離分別為dA,dB
由拋物線的定義可知|AF|=dA=x1+1,|BF|=dB=x2+1,于是|AB|=|AF|+|BF|=x1+x2+2.
由已知得拋物線的焦點為F(1,0),斜率k=tan
π
4
=1,所以直線AB方程為y=x-1.
將y=x-1代入方程y2=4x,得(x-1)2=4x,化簡得x2-6x+1=0.
由求根公式得x1+x2=6,于是|AB|=|AF|+|BF|=x1+x2+2=8.
故選B.
點評:本題主要考查了拋物線的應用以及直線與圓錐曲線的綜合問題和方程的思想,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
的右準線是x=1,傾斜角為α=
π
4
的直線l
交橢圓于A、B兩點,AB的中點為M(-
1
2
,
1
4
)

(I)求橢圓的方程;
(II)若P、Q是橢圓上滿足|OP|2+|OQ|2=
3
4
的點
,若直線OP、OQ的斜率分別為kOP,kOQ,求證:|kOP•kOQ|是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1(-c,0),F2(c,0)是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,過點F1作傾斜角為
π
4
的直線l交橢圓于A,B兩點,
AF1
=(2-
3
)
F1B

(1)求橢圓的離心率;
(2)若|AB|=3,求橢圓的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•上海模擬)本題共有2個小題,第1小題滿分8分,第2小題滿分6分
過直角坐標平面xOy中的拋物線y2?2px (p>0)的焦點F作一條傾斜角為
π4
的直線與拋物線相交于A、B兩點.
(1)用p表示A、B之間的距離并寫出以AB為直徑的圓C方程;
(2)若圓C于y軸交于M、N兩點,寫出M、N的坐標,證明∠MFN的大小是與p無關的定值,并求出這個值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若傾斜角為
π
4
的直線l通過拋物線y2=4x的焦點且與拋物線相交于M、N兩點,則線段MN的長為( 。
A.
13
B.8C.16D.8
2

查看答案和解析>>

同步練習冊答案