(2011•寶坻區(qū)一模)已知f(x)的定義域為(-1,1),又f(x)是奇函數(shù)且是減函數(shù),若f(m-2)+f(2m-3)≥0,那么實數(shù)m的取值范圍是
(1,
5
3
(1,
5
3
分析:通過分析函數(shù)定義域的范圍,以及函數(shù)是奇函數(shù)且是減函數(shù)可以列出不等式,從而求解.
解答:∵f(x)的定義域為(-1,1)
-1<m-2<1
-1<2m-3<1
    ①
有∵f(x)是奇函數(shù)且是減函數(shù)
∴f(m-2)+f(2m-3)≥0
f(m-2)≥-f(2m-3)=f(3-2m)
即m-2≤3-2m     ②
聯(lián)合①②解得:
1<m<
5
3

所以實數(shù)m的取值范圍是(1,
5
3
點評:考查函數(shù)定義域的作用以及奇函數(shù)和減函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)一口袋中裝有編號為1.2.3.4.5.6.7的七個大小相同的小球,現(xiàn)從口袋中一次隨機抽取兩球,每個球被抽到的概率是相等的,用符號(a,b)表示事件“抽到的兩球的編號分別為a,b,且a<b”.
(Ⅰ)總共有多少個基本事件?用列舉法全部列舉出來;
(Ⅱ)求所抽取的兩個球的編號之和大于6且小于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)如圖,△BCD所在的平面垂直于正△ABC所在的平面,∠BCD=90°,PA⊥平面ABC,DC=BC=2PA,E,F(xiàn)分別為DB,CB的中點,
(1)證明PE∥平面ABC;
(2)證明AE⊥BC;
(3)求直線PF與平面BCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)已知向量
a
=(1,2),
b
=(cosa,sina)
,
a
b
,則tan(a+
π
4
)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)數(shù)列{an}為正項等比數(shù)列,若a2=1,且an+an+1=6an-1(n∈N,n≥2),則此數(shù)列的前4項和S4=
15
2
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•寶坻區(qū)一模)設(shè)函數(shù)f(x)=sinx+cos(x+
π
6
),x∈R.
(1)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
π
2
]上的值域;
(2)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若f(A)=
3
2
,且a=
3
2
b,求角B的值.

查看答案和解析>>

同步練習(xí)冊答案