設函數(shù)f(x)=x3+ax2+bx(x>0)的圖象與直線y=4相切于M(1,4).
(Ⅰ)求f(x)=x3+ax2+bx在區(qū)間(0,4]上的最大值與最小值;
(Ⅱ)設存在兩個不等正數(shù)s,t(s<t),當x∈[s,t]時,函數(shù)f(x)=x3+ax2+bx的值域是[ks,kt],求正數(shù)k的取值范圍.

解:(Ⅰ)f′(x)=3x2+2ax+b.依題意則有:所以解得
所以f(x)=x3-6x2+9x;
f′(x)=3x2-12x+9=3(x-1)(x-3),由f′(x)=0可得x=1或x=3.
f′(x),f(x)在區(qū)間(0,4]上的變化情況為:
x0(0,1)1(1,3)3(3,4)4
f′(x)+0-0+
f(x)0增函數(shù)4減函數(shù)0增函數(shù)4
所以函數(shù)f(x)=x3-6x2+9x在區(qū)間[0,4]上的最大值是4,最小值是0.
(2)由函數(shù)的定義域是正數(shù)知,s>0,故極值點(3,0)不在區(qū)間[s,t]上;
①若極值點M(1,4)在區(qū)間[s,t]上,此時0<s≤1≤t<3,
故有(i)或(ii)
(i)由k=,1≤t<3知,k∈,當且僅當t=1時,k=4;
再由k=(s-3)2,0<s≤1知,k∈[4,9),當且僅當s=1時,k=4.
由于s≠t,故不存在滿足要求的k值.
(ii)由s=f(t)=f(t)=,及0<s≤1可解得2≤t<3,
所以k=,2≤t<3知,k∈;
即當k∈時,存在t=∈[2,3),s=f(t)=∈(0,1],
且f(s)≥4s=f(t)>f(t),滿足要求.
②若函數(shù)f(x)在區(qū)間[s,t]上單調(diào)遞增,則0<s<t≤1或3<s<t,
,故s,t是方程x2-6x+9=k的兩根,
由于此方程兩根之和為3,故[s,t]不可能同在一個單調(diào)增區(qū)間內(nèi);
③若函數(shù)f(x)在區(qū)間[s,t]上單調(diào)遞減,則1<s<t<3,
兩式相減并整理得s2(s-3)2=t2(t-3)2,由1<s<t<3知s(s-3)=t(t-3),即s+t=3,
再將兩式相減并除以s-t得-k=(s2+st+t2)-6(s+t)+9=(s+t)2-6(s+t)+9-st=-st,
即k=st,所以s,t是方程x2-3x+k=0的兩根,
令g(x)=x2-3x+k,
解得2<k<,即存在s=,t=滿足要求.
綜上可得,當<k<時,存在兩個不等正數(shù)s,t(s<t),使x∈[s,t]時,
函數(shù)f(x)=x3-6x2+9x的值域恰好是[ks,kt].
分析:(1)先求出函數(shù)的導數(shù),根據(jù)導數(shù)求函數(shù)的極值,再求出端點值,比較極值和端點值的大小,得出最值.
(2)由函數(shù)的定義域是正數(shù)知,s>0,故極值點(3,0)不在區(qū)間[s,t]上,討論st的取值范圍,最后兩式相減并整理得出結果
點評:該題考查函數(shù)的求導以及對st的討論,以及判別式的應用,注意在討論函數(shù)單調(diào)性時要畫表格.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

18、設函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2+x+1,a∈R.
(1)若x=1時,函數(shù)f(x)取得極值,求函數(shù)f(x)的圖象在x=-1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(
12
,1)
內(nèi)不單調(diào),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3+ax2-a2x+5(a>0)
(1)當函數(shù)f(x)有兩個零點時,求a的值;
(2)若a∈[3,6],當x∈[-4,4]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=x3•cosx+1,若f(a)=5,則f(-a)=
 

查看答案和解析>>

同步練習冊答案