10.某大型企業(yè)人力資源部為了研究企業(yè)員工工作態(tài)度和對(duì)待企業(yè)改革態(tài)度的關(guān)系,經(jīng)過調(diào)查得到如下列聯(lián)表:
態(tài)度積極支持企業(yè)改革不太支持企業(yè)改革總計(jì)
工作積極544094
工作一般326395
總計(jì)86103189
根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為工作態(tài)度與對(duì)待企業(yè)改革態(tài)度之間有關(guān)系?

分析 根據(jù)題意計(jì)算觀測(cè)值,把觀測(cè)值同表格所給的臨界值進(jìn)行比較,看觀測(cè)值大于哪一個(gè)臨界值,得到說明兩個(gè)變量有關(guān)系的可信程度.

解答 解:根據(jù)列聯(lián)表中的數(shù)據(jù),計(jì)算觀測(cè)值
K2=$\frac{{n(ac-bd)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{189{×(54×63-32×40)}^{2}}{94×95×86×103}$≈10.759>7.879,
對(duì)照臨界值表得出,在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為工作態(tài)度與對(duì)待企業(yè)改革態(tài)度之間有關(guān)系.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,即兩個(gè)變量之間的關(guān)系的可信程度與臨界值表的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知P是以F1(-1,0)為圓心,以4為半徑的圓上的動(dòng)點(diǎn),P與F2(1,0)所連線段的垂直平分線與線段PF1交于點(diǎn)M.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)已知點(diǎn)E坐標(biāo)為(4,0),并且傾斜角為銳角的直線l經(jīng)過點(diǎn)F2(1,0)并且與曲線C相交于A,B兩點(diǎn),
(ⅰ)求證:∠AEF2=∠BEF2;
(ⅱ)若cos∠AEB=$\frac{7}{9}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=|x+1|+|x-3|,g(x)=$\sqrt{7x+14}$+$\sqrt{6-x}$.
(1)求不等式f(x)≥8的解集;
(2)若存在實(shí)數(shù)x0,使得g(x0)>log${\;}_{\sqrt{2}}$(3t+1)成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,PA與圓O相切于點(diǎn)A,割線PO與圓O交于C,D兩點(diǎn),DE垂直直徑AB于E,且2OE=OB=1,則PC等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)關(guān)于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]內(nèi)有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如表的列聯(lián)表:
喜愛打籃球不喜愛打籃球合計(jì)
男生5
女生[來10
合計(jì)50
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為$\frac{3}{5}$.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.
參考數(shù)據(jù):χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
當(dāng)χ2≤2.706時(shí),沒有充分的證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為變量A,B是沒有關(guān)聯(lián)的;
當(dāng)χ2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)各項(xiàng)為正的數(shù)列{an}中l(wèi)gan+1lgan+1=lg$\frac{{a}_{n+1}}{{a}_{n}}$,若a1=100,則a11=$1{0}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.有5名男醫(yī)生、6名女醫(yī)生,從中選出2名男醫(yī)生、1名女醫(yī)生組成一個(gè)醫(yī)療小組,則不同的選法共有(  )
A.60種B.70種C.75種D.150種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,長軸長為2$\sqrt{3}$,直線l:y=kx+m交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)若以AB為直徑的圓恰過坐標(biāo)原點(diǎn)O,證明:原點(diǎn)O到直線l的距離為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案