已知a1、x、y、a2成等差數(shù)列,b1、x、y、b2成等比數(shù)列,則
(a1+a2)2
b1b2
-2的取值范圍是
 
考點:等差數(shù)列的性質(zhì),等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:首先根據(jù)等比中項和等差中項得出a1+a2=x+y和b1b2=xy,再由均值不等式即可得出結(jié)果.
解答: 解:∵a1、x、y、a2成等差數(shù)列,∴a1+a2=x+y,
∵b1、x、y、b2成等比數(shù)列,∴b1b2=xy,
(a1+a2)2
b1b2
-2=
(x+y)2
xy
-2
=
x2+y2
xy

若xy>0,則
x2+y2
xy
≥2;
若xy<0,則
x2+y2
xy
≤-2.
(a1+a2)2
b1b2
-2的取值范圍是(-∞,-2]∪[2,+∞).
故答案為(-∞,-2]∪[2,+∞).
點評:此題考查了等比數(shù)列的性質(zhì)和等差數(shù)列的性質(zhì),以及均值不等式的運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓內(nèi)接正方形相對兩個頂點的坐標(biāo)分別為A(5,6),C(3,-4),則這個圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x+y)=f(x)+f(y)且當(dāng)x>0時,f(x)<0,又f(1)=-2
(1)判斷f(x)的奇偶性;
(2)求證:f(x)為R上的減函數(shù);
(3)求f(x)在區(qū)間[-3,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如圖的程序框圖,那么輸出的數(shù)是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a<0,向量
m
=(2,a-3),
n
=(a+2,a-1),若
m
n
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人需要補充維生素,現(xiàn)有甲、乙兩種維生素膠囊,這兩種膠囊都含有維生素A,C,D,E和最新發(fā)現(xiàn)的Z.甲種膠囊每粒含有維生素A,C,D,E,Z分別是1mg,1mg,4mg,4mg,5mg;乙種膠囊每粒含有維生素A,C,D,E,Z分別是3mg,2mg,1mg,3mg,2mg.此人每天攝入維生素A至多19mg,維生素C至多13mg,維生素D至多24mg,維生素E至少12mg.
(1)設(shè)該人每天服用甲種膠囊x粒,乙種膠囊y粒,為了能滿足此人每天維生素的需要量,請寫出x,y滿足的不等關(guān)系.
(2)在(1)的條件下,他每天服用兩種膠囊分別為多少時,可攝入最大量的維生素Z,且最大量為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
x+2
,-1≤x≤0
x2-2x,0<x≤1
若f(n-m)≤f(2m-n),則m+n的最小值是( 。
A、-5B、2C、5D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某上市股票在30天內(nèi)每股的交易價格P(元)與時間t(天)組成有序數(shù)對(t,p),點(t,p)落在圖中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量Q(萬股)與時間t(天)的部分?jǐn)?shù)據(jù)如下表所示
第t天4101622
Q(萬股)36302418
(1)試根據(jù)提供的圖象,求出該種股票每股交易價格P(元)與時間t(天)所滿足的函數(shù)關(guān)系式;
(2)若t,Q滿足一次函數(shù)關(guān)系,試根據(jù)表中數(shù)據(jù)確定日交易量Q(萬股)與時間t(天)的函數(shù)關(guān)系式;
(3)在(2)的結(jié)論下,用y(萬元)表示該股票日交易額,寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾日交易額最大,最大值為多少?
[提示:日交易額=日交易量x每股的交易價格].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,若c2=(a-b)2+6,c=
π
2
,則△ABC的面積是( 。
A、3
B、
9
3
2
C、
3
3
2
D、3
3

查看答案和解析>>

同步練習(xí)冊答案