分析 當2≤n≤100時,an+2a102-n=3×2n恒成立,可得:a2+2a100=3×22,a3+2a99=3×23,…,a100+2a2=3×2100,累加可得數(shù)列{an}的前100項和.
解答 解:∵當2≤n≤100時,an+2a102-n=3×2n恒成立,
∴a2+2a100=3×22,
a3+2a99=3×23,
…,
a100+2a2=3×2100,
∴(a2+2a100)+(a3+2a99)+…+(a100+2a2)=3(a2+a3+…+a100)
=3(22+23+…+2100)=$\frac{4(1{-2}^{99})}{1-2}$=3(2101-4).
∴a2+a3+…+a100=2101-4,
又a1=-2101,
∴S100=a1+a2+a3+…+a100=-4.
故答案為:-4.
點評 本題考查數(shù)列的求和,考查遞推關(guān)系的應(yīng)用,求得a2+a3+…+a100=2101-4是解決問題的關(guān)鍵,也是難點.考查推理、運算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ①③ | C. | ①② | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∪B=A | B. | A⊆B | C. | A∩B=∅ | D. | A∩(∁IB)≠∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-2)2+(y-1)2=1 | B. | (x+2)2+(y-1)2=1 | C. | (x-2)2+(y+1)2=1 | D. | (x-1)2+(y+2)2=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com