3.若$tanθ=\frac{1}{3}$,則sin2θ=( 。
A.$-\frac{3}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

分析 利用二倍角公式、同角三角函數(shù)的基本關(guān)系,求得sin2θ的值.

解答 解:若$tanθ=\frac{1}{3}$,則$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{\frac{2}{3}}{\frac{1}{9}+1}$=$\frac{3}{5}$,
故選:D.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若α是第二象限角,則π+α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DE的中點(diǎn).
(1)求證:BE∥平面ACF
(2)求異面直線AD與CF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-2ax-alnx$對(duì)區(qū)間(1,2)上任意x1,x2(x1≠x2),都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<0$,則a的取值范圍為( 。
A.$({\frac{4}{5},+∞})$B.$[{\frac{4}{5},+∞})$C.$[{\frac{1}{3},+∞})$D.(-∞,1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18,現(xiàn)采用分層抽樣的方法從這三個(gè)協(xié)會(huì)中抽取6名運(yùn)動(dòng)員組隊(duì)參加比賽
(1)求應(yīng)從這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員的人數(shù);
(2)將抽取的6名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為A1,A2,A3,A4,A5,A6.現(xiàn)從這6名運(yùn)動(dòng)員中隨機(jī)抽取2人參加雙打比賽,設(shè)A為事件“編號(hào)為A5和A6的兩名運(yùn)動(dòng)員中至少有1人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知x,y的一組數(shù)據(jù)如表所示:
x13678
y12345
(1)從x,y中各取一個(gè)數(shù),求x+y≥10的概率:
(2)對(duì)于表中數(shù)據(jù),甲、乙兩同學(xué)給出的擬合直線分別為$y=\frac{1}{3}x+1$與$y=\frac{1}{2}x+\frac{1}{2}$,試判斷哪條直線擬合程度更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):
單價(jià)x(元)88.28.48.68.89
銷(xiāo)量y(件)908483807568
(1)求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline{y}$-b$\overline{x}$;
(2)預(yù)計(jì)在今后的銷(xiāo)售中,銷(xiāo)量與單價(jià)仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷(xiāo)售收入-成本)
回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知$x={5^{{{log}_2}3.4}}$,$y={5^{{{log}_4}3.6}}$,$z={(\frac{1}{5})^{{{log}_3}0.3}}$,則x,y,z大小關(guān)系為( 。
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ex+m在x=1處有極值,求m的值及f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案