【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn).

(1)求證:AM∥平面SCD;
(2)求平面SCD與平面SAB所成的二面角的余弦值;
(3)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與平面SAB所成的角為θ,求sinθ的最大值.

【答案】
(1)證明:∵在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA丄底面ABCD,

AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn),

∴以點(diǎn)A為坐標(biāo)原點(diǎn),AD為x軸,AB為y軸,AS為z軸,建立空間直角坐標(biāo)系,

則A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),S(0,0,2),M(0,1,1),

=(0,1,1), =(1,0,﹣2), =(﹣1,﹣2,0),

設(shè)平面SCD的一個(gè)法向量為 =(x,y,z),

,令z=1,得 =(2,﹣1,1),

=0,∴

∵AM平面SCD,∴AM∥平面SCD


(2)解:由題意平面SAB的一個(gè)法向量 =(1,0,0),

設(shè)平面SCD與平面SAB所成的二面角為α,由題意0 ,

則cosα= = =

∴平面SCD與平面SAB所成的二面角的余弦值為


(3)解:設(shè)N(x,2x﹣2,0),則 =(x,2x﹣3,﹣1),

∵平面SAB的一個(gè)法向量 =(1,0,0),MN與平面SAB所成的角為θ

∴sinθ=|cos< >|= =| |

=

=

當(dāng) ,即x= 時(shí),sinθ取得最大值(sinθ)max=


【解析】(1)通過建立直角坐標(biāo)系利用平面SCD的法向量,向量數(shù)量積等于零即可證明平行關(guān)系。(2)分別求出平面SCD與平面SAB的法向量,根據(jù)法向量的夾角即可求出。(3)根據(jù)線面角的夾角公式即可得出表達(dá)式,進(jìn)而利用二次函數(shù)的單調(diào)性即可得出。
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,其中b≠c,且bcosB=ccosC,延長線段BC到點(diǎn)D,使得BC=4CD=4,∠CAD=30°,
(Ⅰ)求證:∠BAC是直角;
(Ⅱ)求tan∠D的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓 的圓心為F1 , 直線l過點(diǎn)F2(2,0)且不與x軸、y軸垂直,且與圓F1于C,D兩點(diǎn),過F2作F1C的平行線交直線F1D于點(diǎn)E,
(1)證明||EF1|﹣|EF2||為定值,并寫出點(diǎn)E的軌跡方程;
(2)設(shè)點(diǎn)E的軌跡為曲線Γ,直線l交Γ于M,N兩點(diǎn),過F2且與l垂直的直線與圓F1交于P,Q兩點(diǎn),求△PQM與△PQN的面積之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京市2016年12個(gè)月的PM2.5平均濃度指數(shù)如圖所示.由圖判斷,四個(gè)季度中PM2.5的平均濃度指數(shù)方差最小的是(
A.第一季度
B.第二季度
C.第三季度
D.第四季度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1(﹣1,0),F(xiàn)2(1,0)分別是橢圓C: =1(a>0)的左、右焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若A,B分別在直線x=﹣2和x=2上,且AF1⊥BF1
(ⅰ)當(dāng)△ABF1為等腰三角形時(shí),求△ABF1的面積;
(ⅱ)求點(diǎn)F1 , F2到直線AB距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(sinx,cos2x), =( cosx,1),x∈R,設(shè)f(x)=
(1)求f(x)的解析式及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a=2,f(A)=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=(x﹣ )cosx(﹣π≤x≤π且x≠0)的圖象可能為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A、B、C的對(duì)邊分別為a,b,c,已知A≠ ,且3sinAcosB+ bsin2A=3sinC.
(I)求a的值;
(Ⅱ)若A= ,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心為O,點(diǎn)E是側(cè)棱BB1上的一個(gè)動(dòng)點(diǎn).有下列判斷: ①直線AC與直線C1E是異面直線;②A1E一定不垂直于AC1;③三棱錐E﹣AA1O的體積為定值;④AE+EC1的最小值為2
其中正確的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案