精英家教網 > 高中數學 > 題目詳情

【題目】從某企業(yè)生產的某種產品中抽取500,測量這些產品的一項質量指標值由測量結果得如下頻率分布直方圖:

(1)求這500件產品質量指標值的樣本平均數和樣本方差s2(同一組中的數據用該組區(qū)間的中點值作代表);

(2)由直方圖可以認為這種產品的質量指標值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數σ2近似為樣本方差s2.

()利用該正態(tài)分布,P(187.8<Z<212.2);

()某用戶從該企業(yè)購買了100件這種產品,X表示這100件產品中質量指標值位于區(qū)間(187.8,212.2)的產品件數.利用()的結果,求E(X).

附: 12.2.ZN(μ,σ2),P(μσ<Z<μσ)0.682 6,P(μ2σ<Z<μ2σ)0.954 4.

【答案】11502() 0.6826. () 68.26.

【解析】試題分析:

(1)利用題中所給的數據可得平均數 ,方差 ;

(2)利用正態(tài)分布的對稱性可得:P(187.8<Z<212.2)0.6826.

(3)利用(i)的結論結合題意可得 .

試題解析:

(1)抽取產品的質量指標值的樣本平均數x-和樣本方差s2分別為

170×0.02180×0.09190×0.22200×0.33210×0.24220×0.08230×0.02200,

s2(30)2×0.02(20)2×0.09(10)2×0.220×0.33102×0.24202×0.08302×0.02150.

(2)()(1)ZN(200,150),從而

P(187.8<Z<212.2)P(20012.2<Z<20012.2)0.6826.

(ⅱ)由(ⅰ)知,一件產品的質量指標值位于區(qū)間(187.8,212.2)的概率為0.682 6,依題意知XB(100,0.6826),所以E(X)=100×0.682 6=68.26.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知冪函數f(x)=xα,當x>1時,恒有f(x)<x,則α的取值范圍是(  )

A. (0,1) B. (-∞,1)

C. (0,+∞) D. (-∞,0)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于定義域為的函數,若滿足①;②當,且時,都有;③當,且時, ,則稱為“偏對函數”.現(xiàn)給出四個函數: ; . 則其中是“偏對稱函數”的函數個數為( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,,都是邊長為2的等邊三角形,設在底面的射影為.

(1)求證:中點;

(2)證明:;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某廠商調查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據這10個賣場的銷售情況,得到如圖所示的莖葉圖.

為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數據平均數的賣場命名為該型號電視機的“星級賣場”.

(1)當時,記甲型號電視機的“星級賣場”數量為,乙型號電視機的“星級賣場”數量為,比較的大小關系;

(2)在這10個賣場中,隨機選取2個賣場,記為其中甲型號電視機的“星級賣場”的個數,求的分布列和數學期望;

(3)若,記乙型號電視機銷售量的方差為,根據莖葉圖推斷為何值時,達到最小值.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐的直觀圖和三視圖如下:

(1)求證: 底面;

(2)求三棱錐的體積;

(3)求三棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017屆湖北省武漢市武昌區(qū)高三1月調研考試文數】已知函數.

(Ⅰ)討論的單調性;

(Ⅱ)設,若對,,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某縣城出租車的收費標準是:起步價是元(乘車不超過千米);行駛千米后,每千米車費1.2元;行駛千米后,每千米車費1.8元.

(1)寫出車費與路程的關系式;

(2)一顧客計劃行程千米,為了省錢,他設計了三種乘車方案:

①不換車:乘一輛出租車行千米;

②分兩段乘車:先乘一輛車行千米,換乘另一輛車再行千米;

③分三段乘車:每乘千米換一次車.

問哪一種方案最省錢.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】線段AB的兩端在直二面角αlβ的兩個面內,并與這兩個面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

同步練習冊答案