【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=2﹣f(x),若函數(shù)y= 與y=f(x)圖象的交點為(x1 , y1),(x2 , y2),…,(xm , ym),則 (xi+yi)=(
A.0
B.m
C.2m
D.4m

【答案】B
【解析】解:函數(shù)f(x)(x∈R)滿足f(﹣x)=2﹣f(x),即為f(x)+f(﹣x)=2,
可得f(x)關(guān)于點(0,1)對稱,
函數(shù)y= ,即y=1+ 的圖象關(guān)于點(0,1)對稱,
即有(x1 , y1)為交點,即有(﹣x1 , 2﹣y1)也為交點,
(x2 , y2)為交點,即有(﹣x2 , 2﹣y2)也為交點,

則有 (xi+yi)=(x1+y1)+(x2+y2)+…+(xm+ym
= [(x1+y1)+(﹣x1+2﹣y1)+(x2+y2)+(﹣x2+2﹣y2)+…+(xm+ym)+(﹣xm+2﹣ym)]
=m.
故選B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b∈R且a≠0),F(xiàn)(x)=
(1)若f(﹣1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的解析式;
(2)在(1)的條件下,當x∈[﹣2,2]時,g(x)=f(x)﹣kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)是偶函數(shù),判斷F(m)+F(n)是否大于零.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3﹣2ax2+3x(x∈R).
(1)若a=1,點P為曲線y=f(x)上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求滿足條件的最大整數(shù)a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)當a=2時,求f(x)在x∈[0,1]的最大值;
(2)當0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和為a,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線y= x與拋物線y= x2﹣4交于A,B兩點,線段AB的垂直平分線與直線y=﹣5交于Q點,當P為拋物線上位于線段AB下方(含A,B)的動點時,則△OPQ面積的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知多面體中,四邊形為平行四邊形, ,且, , .

(1)求證:平面平面;

(2)若,直線與平面夾角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:
(1)命題“若 ,則tanα=1”的逆否命題為假命題;
(2)命題p:x∈R,sinx≤1.則¬p:x0∈R,使sinx0>1;
(3)“ ”是“函數(shù)y=sin(2x+)為偶函數(shù)”的充要條件;
(4)命題p:“x0∈R,使 ”;命題q:“若sinα>sinβ,則α>β”,那么(¬p)∧q為真命題.
其中正確的個數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項和為Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設(shè)數(shù)列{bn}的前n項和為Tn , 且 (λ為常數(shù)).令cn=b2n , (n∈N*),求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)用定義證明函數(shù)f(x)在(﹣∞,+∞)上為減函數(shù);
(2)若x∈[1,2],求函數(shù)f(x)的值域;
(3)若g(x)= ,且當x∈[1,2]時g(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案