【題目】如圖,在四面體中,,

(1)證明:;

(2)若,四面體的體積為2,求二面角的余弦值

【答案】(1)見解析;(2)

【解析】分析:(1)作Rt△斜邊上的高,連結(jié),易證平面,從而得證;

(2)由四面體的體積為2,,得,所以平面,以,,,,軸建立空間直角坐標(biāo)系,利用面的法向量求解二面角的余弦值即可.

詳解:解法一:(1)如圖,作Rt△斜邊上的高,連結(jié)

因?yàn)?/span>,所以Rt△≌Rt△.可得.所以平面,于是

(2)在Rt△中,因?yàn)?/span>,,所以, ,△的面積.因?yàn)?/span>平面,四面體的體積所以,,所以平面

,,,軸建立空間直角坐標(biāo)系.則,,,

設(shè)是平面的法向量,,,可取

設(shè)是平面的法向量,,,可取

因?yàn)?/span>,二面角的平面角為鈍角,所以二面角的余弦值為

解法二:(1)因?yàn)?/span>,,所以Rt△≌Rt△.可得

設(shè)中點(diǎn)為,連結(jié),,,所以平面,,于是

(2)在Rt△中,因?yàn)?/span>,所以△面積為.設(shè)到平面距離為,因?yàn)樗拿骟w的體積,所以

在平面內(nèi)過垂足為,因?yàn)?/span>,所以.由點(diǎn)到平面距離定義知平面

因?yàn)?/span>,所以因?yàn)?/span>,,所以,,所以,即二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了位育齡婦女,結(jié)果如表.

非一線

一線

總計(jì)

愿生

不愿生

總計(jì)

附表:

算得,參照附表,得到的正確結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

B. 以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

C. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“生育意愿與城市級(jí)別無關(guān)”

D. 以上的把握認(rèn)為“生育意愿與城市級(jí)別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

(1)請(qǐng)解釋的實(shí)際意義,并求的表達(dá)式;

(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點(diǎn)為M,

(1)求過點(diǎn)M且到點(diǎn)P(0,4)的距離為2的直線l的方程;

(2)求過點(diǎn)M且與直線l3:x+3y+1=0平行的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(1)求張同學(xué)至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對(duì)甲類題的概率都是 ,答對(duì)每道乙類題的概率都是 ,且各題答對(duì)與否相互獨(dú)立.用X表示張同學(xué)答對(duì)題的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面斜坐標(biāo)系中,,平面上任意一點(diǎn)關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若(其中,分別為與軸,軸同方向的單位向量),則點(diǎn)的斜坐標(biāo)為

(1)若點(diǎn)在斜坐標(biāo)系中的坐標(biāo)為,求點(diǎn)到原點(diǎn)的距離.

(2)求以原點(diǎn)為圓心且半徑為的圓在斜坐標(biāo)系中的方程.

(3)在斜坐標(biāo)系中,若直線交(2)中的圓于兩點(diǎn),則當(dāng)為何值時(shí),的面積取得最大值?并求此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, , ,且底面.

(1)證明:平面平面

(2)若的中點(diǎn),且,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標(biāo)為(2,1).

(1)若圓C1與圓C2相交于A,B兩點(diǎn),且|AB|=,求點(diǎn)C1到直線AB的距離;

(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.

(1)求過點(diǎn)且與圓相切的直線方程;

(2)過點(diǎn)任作一條直線與圓交于不同兩點(diǎn),且圓軸正半軸于點(diǎn),求證:直線的斜率之和為定值.

查看答案和解析>>

同步練習(xí)冊答案