2.空間中任意放置的棱長為2的正四面體ABCD.下列命題正確的是個數(shù)是( 。 個
①正四面體ABCD的主視圖面積可能是$\sqrt{2}$;
②正四面體ABCD的主視圖面積可能是$\frac{2\sqrt{6}}{3}$;
③正四面體ABCD的主視圖面積可能是$\sqrt{3}$;
④正四面體ABCD的主視圖面積可能是2
⑤正四面體ABCD的主視圖面積可能是4.
A.1B.2C.3D.4

分析 求出棱長為2的正四面體ABCD的正視圖面積的范圍,進(jìn)而可判斷出命題正確的個數(shù).

解答 解:棱長為2的正四面體ABCD.
當(dāng)主視圖的觀察方向與四面體的某個面垂直時,正視圖的面積取最小值$\frac{\sqrt{3}}{4}•{2}^{2}$=$\sqrt{3}$,
當(dāng)主視圖的觀察方向與四面體的兩條異面的棱的公垂線平行時,正視圖的面積取最大值:$(2\sqrt{2})^{2}$=8,
故正四面體ABCD的主視圖面積S∈[$\sqrt{3}$,8],
故①錯誤,②錯誤,③正確,④正確,
故選:B.

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了空間幾何體的三視圖,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對任意實(shí)數(shù)x,若不等式4x-m•2x+2>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.-2$\sqrt{2}$<m<2$\sqrt{2}$B.-2<m<2C.m≤2$\sqrt{2}$D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=ex+ln(x+1)的圖象在(0,f(0))處的切線與直線x-ny+4=0垂直,則n的值為(  )
A.-2B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計(jì)算:(lg5)2+lg2•lg50-log89•log2732=-$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-alnx在區(qū)間(1,2]內(nèi)是增函數(shù),g(x)=x-a$\sqrt{x}$在區(qū)間(0,1)內(nèi)是減函數(shù).
(1)求f(x)、g(x)的表達(dá)式;
(2)求證:當(dāng)x>0時,方程f(x)-g(x)=x2-2x+3有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=lnx,g(x)=x+$\frac{a}{x}$,a∈R.
(1)設(shè)F(x)=f(x)+g(x)-x,若F(x)在[1,e]上的最小值是$\frac{3}{2}$,求實(shí)數(shù)a的值;
(2)若x≥1時,f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)n≥2時且n∈N*時,求證:$\frac{ln2}{3}$×$\frac{ln3}{4}$×$\frac{ln4}{5}$×…×$\frac{lnn}{n+1}$<$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若雙曲線x2-2y2=K的焦距是6,則K的值是(  )
A.±24B.±6C.24D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.方程x-2=($\frac{1}{2}$)x的解的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一個建筑物CD垂直于水平面,一個人在建筑物的正西A點(diǎn),測得建筑物頂端的仰角是α,這個人再從A點(diǎn)向南走到B點(diǎn),再測得建筑物頂端仰角是β,設(shè)A、B兩地距離為a,求建筑物的高h(yuǎn)的值(A,B,C三點(diǎn)在同一水平面內(nèi)).

查看答案和解析>>

同步練習(xí)冊答案