分析 數(shù)列{an}滿足a1=1,$\frac{{{a_{n+1}}}}{a_n}$=2,利用等比數(shù)列的通項公式可得:an=2n-1.由bn+1-bn=$\frac{1}{{{a_{n+1}}}}$=$\frac{1}{{2}^{n}}$,利用bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1即可得出.
解答 解:∵數(shù)列{an}滿足a1=1,$\frac{{{a_{n+1}}}}{a_n}$=2,
∴數(shù)列{an}是等比數(shù)列,首項為1,公比為2.
∴an=2n-1.
∴bn+1-bn=$\frac{1}{{{a_{n+1}}}}$=$\frac{1}{{2}^{n}}$,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=$\frac{1}{{2}^{n-1}}$+$\frac{1}{{2}^{n-2}}$+…+$\frac{1}{2}$+1
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$.
故答案為:2-$\frac{1}{{2}^{n-1}}$.
點評 本題考查了等比數(shù)列的通項公式及其前n項和公式、“累加求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{9}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0” | |
B. | 若p為真命題,q為假命題,則(¬p)∨q為真命題 | |
C. | 為了了解高考前高三學生每天的學習時間,現(xiàn)要用系統(tǒng)抽樣的方法從某班50個學生中抽取一個容量為10的樣本,已知50個學生的編號為1,2,3…50,若8號被選出,則18號也會被選出 | |
D. | 已知m、n是兩條不同直線,α、β是兩個不同平面,α∩β=m,則“n?α,n⊥m”是“α⊥β”的充分條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com