A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
分析 根據(jù)基本不等式即可求出答案.
解答 解:∵0<x<$\frac{1}{2}$,
∴1-4x2>0
∴y=x$\sqrt{1-4{x}^{2}}$=$\frac{1}{2}$•$\sqrt{4{x}^{2}}$•$\sqrt{1-4{x}^{2}}$≤$\frac{1}{2}$$•\frac{4{x}^{2}+1-4{x}^{2}}{2}$=$\frac{1}{4}$.當且僅當x=$\frac{\sqrt{2}}{4}$時取等號,
故函數(shù)y=x$\sqrt{1-4{x}^{2}}$的最大值為$\frac{1}{4}$,
故選:C.
點評 本題考查了基本不等式在求函數(shù)的最值的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com