【題目】若直線 與直線2x+3y﹣6=0的交點位于第一象限,則直線l的傾斜角的取值范圍( )
A.
B.
C.
D.
【答案】B
【解析】解:聯(lián)立兩直線方程得: ,
將①代入②得:x= ③,把③代入①,求得y= ,
所以兩直線的交點坐標為( , ),
因為兩直線的交點在第一象限,所以得到 ,
由①解得:k>﹣ ;由②解得k> 或k<﹣ ,所以不等式的解集為:k> ,
設直線l的傾斜角為θ,則tanθ> ,所以θ∈( , ).
故選B.
聯(lián)立兩直線方程到底一個二元一次方程組,求出方程組的解集即可得到交點的坐標,根據(jù)交點在第一象限得到橫縱坐標都大于0,聯(lián)立得到關于k的不等式組,求出不等式組的解集即可得到k的范圍,然后根據(jù)直線的傾斜角的正切值等于斜率k,根據(jù)正切函數(shù)圖象得到傾斜角的范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)。
(1)若f(x)的圖象與g(x)的圖象所在兩條曲線的一個公共點在y軸上,且在該點處兩條曲線的切線互相垂直,求b和c的值。
(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說明理由;
(3)若b=c=0,證明:對任意給定的正數(shù)a,總存在正數(shù)m,使得當x時,
恒有f(x)>g(x)成立。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 點(n, )在直線y= x+ 上. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn= ,求數(shù)列{bn}的前n項和為Tn , 并求使不等式Tn> 對一切n∈N*都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為落實《課標》所倡導的課程理念,切實提高學生的綜合素質,某校高二年級開設“趣味數(shù)學”、“趣味物理”、“趣味化學”3門任意選修課程,供年級300位文科生自由選擇2門(不可多選或少選),選課情況如下表:
(Ⅰ)為了解學生選課情況,現(xiàn)采用分層抽樣方法抽取了三科作業(yè)共50本,統(tǒng)計發(fā)現(xiàn)“趣味物理”有18本,試根據(jù)這一數(shù)據(jù)估計, 的值;
(Ⅱ)為方便開課,學校要求, ,計算的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,已知tanA,tanB是關于x的方程x2+(x+1)p+1=0的兩個實根.
(1)求角C;
(2)求實數(shù)p的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC1∥平面CDB1
(2)求證:AC⊥BC1
(3)求直線AB1與平面BB1C1C所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x|,g(x)=lg(ax2﹣4x+1),若對任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍是( )
A.(﹣∞,4]
B.(0,4]
C.(﹣4,0]
D.[0,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是二次函數(shù),頂點為(﹣1,﹣4),且與x軸的交點為(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在區(qū)間[﹣2,2]上的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com