【題目】中國(guó)已經(jīng)成為全球最大的電商市場(chǎng),但是實(shí)體店仍然是消費(fèi)者接觸商品和品牌的重要渠道.某機(jī)構(gòu)隨機(jī)抽取了年齡介于10歲到60歲的消費(fèi)者200人,對(duì)他們的主要購物方式進(jìn)行問卷調(diào)查.現(xiàn)對(duì)調(diào)查對(duì)象的年齡分布及主要購物方式進(jìn)行統(tǒng)計(jì),得到如下圖表:

主要購物方式

年齡階段

網(wǎng)絡(luò)平臺(tái)購物

實(shí)體店購物

總計(jì)

40歲以下

75

40歲或40歲以上

55

總計(jì)

(1)根據(jù)已知條件完成上述列聯(lián)表,并據(jù)此資料,能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為消費(fèi)者主要的購物方式與年齡有關(guān)?

(2)用分層抽樣的方法從通過網(wǎng)絡(luò)平臺(tái)購物的消費(fèi)者中隨機(jī)抽取8人,然后再從這8名消費(fèi)者中抽取5名進(jìn)行答謝.設(shè)抽到的消費(fèi)者中40歲以下的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

臨界值表:

【答案】(1)可以在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為消費(fèi)者主要的購物方式與年齡有關(guān);(2)見解析

【解析】

(1)先由頻率分布直方圖得到列聯(lián)表,再根據(jù)公式計(jì)算得到卡方值,進(jìn)而作出判斷;(2)消費(fèi)者中40歲以下的人數(shù)為,可能取值為3,45,求出相應(yīng)的概率值,再得到分布列和期望.

(1)根據(jù)直方圖可知40歲以下的消費(fèi)者共有人,40或40歲以上的消費(fèi)者有80人,故根據(jù)數(shù)據(jù)完成列聯(lián)表如下:

主要購物方式

年齡階段

網(wǎng)絡(luò)平臺(tái)購物

實(shí)體店購物

總計(jì)

40歲以下

75

45

120

40歲或40歲以上

25

55

80

總計(jì)

100

100

200

依題意,的觀測(cè)值

故可以在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為消費(fèi)者主要的購物方式與年齡有關(guān).

(2)從通過網(wǎng)絡(luò)平臺(tái)購物的消費(fèi)者中隨機(jī)抽取8人,其中40歲以下的有6人,40歲或40歲以上的有2人,從這8名消費(fèi)者抽取5名進(jìn)行答謝,設(shè)抽到的消費(fèi)者中40歲以下的人數(shù)為,則的可能取值為3,4,5

,

,

的分布列為:

3

4

5

的數(shù)學(xué)期望為3.75.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌計(jì)算機(jī)售后保修期為1年,根據(jù)大量的維修記錄資料,這種品牌的計(jì)算機(jī)在使用一年內(nèi)需要維修1次的占15%,需要維修2次的占6%,需要維修3次的占4%.

1)某人購買了一臺(tái)這個(gè)品牌的計(jì)算機(jī),設(shè)=“一年內(nèi)需要維修k,k=0,1,2,3,請(qǐng)?zhí)顚懴卤恚?/span>

事件

概率

事件是否滿足兩兩互斥?是否滿足等可能性?

2)求下列事件的概率:

A=“1年內(nèi)需要維修”;

B=“1年內(nèi)不需要維修

C=“1年內(nèi)維修不超過1”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)點(diǎn)到點(diǎn)的距離和到直線的距離之比為,若動(dòng)點(diǎn)P的軌跡為曲線C

I)求曲線C的方程;

II)過F的直線C交于AB兩點(diǎn),點(diǎn)M的坐標(biāo)為設(shè)O為坐標(biāo)原點(diǎn).證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長(zhǎng)方體中,寫出所有

1)與直線AB平行的直線,并用“∥”表示;

2)與直線異面的直線;

3)與直線AB平行的平面,并用合適的符號(hào)表示;

4)與平面平行的平面,并用合適的符號(hào)表示;

5)與直線AD垂直的平面,并用合適的符號(hào)表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試.已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐

個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該隊(duì)員的成績(jī),無需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:

(1)計(jì)算值;

(2)以此樣本的頻率作為概率,求

①在本次達(dá)標(biāo)測(cè)試中,“喵兒”得分等于的概率;

②“喵兒”在本次達(dá)標(biāo)測(cè)試中可能得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐(如圖1)的平面展開圖(如圖2)中,四邊形為邊長(zhǎng)等于的正方形,均為正三角形,在三棱錐中:

1)證明:平面平面;

2)若點(diǎn)在棱上運(yùn)動(dòng),當(dāng)直線與平面所成的角最大時(shí),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某市舉行的一次市質(zhì)檢考試中,為了調(diào)查考試試題的有效性以及試卷的區(qū)分度,該市教研室隨機(jī)抽取了參加本次質(zhì)檢考試的500名學(xué)生的數(shù)學(xué)考試成績(jī),并將其統(tǒng)計(jì)如下表所示.

根據(jù)上表數(shù)據(jù)統(tǒng)計(jì),可知考試成績(jī)落在之間的頻率為

(Ⅰ)求m、n的值;

(Ⅱ)已知本歡質(zhì)檢中的數(shù)學(xué)測(cè)試成績(jī),其中近似為樣本的平均數(shù),近似為樣本方差,若該市有4萬考生,試估計(jì)數(shù)學(xué)成績(jī)介于分的人數(shù);以各組的區(qū)間的中點(diǎn)值代表該組的取值現(xiàn)按分層抽樣的方法從成績(jī)?cè)?/span>以及之間的學(xué)生中隨機(jī)抽取12人,再從這12人中隨機(jī)抽取4人進(jìn)行試卷分析,記被抽取的4人中成績(jī)?cè)?/span>之間的人數(shù)為X,求X的分布列以及期望

參考數(shù)據(jù):若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的直線的參數(shù)方程是為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),試問是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是一個(gè)菱形,三角形PAD是一個(gè)等腰三角形,∠BAD=∠PAD=,點(diǎn)E在線段PC上,且PE=3EC.

(1)求證:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案