在極坐標(biāo)系下,已知圓O:和直線:.
(1) 求圓O和直線l的直角坐標(biāo)方程;
(2) 當(dāng)θ∈(0,π)時,求直線l與圓O公共點(diǎn)的一個極坐標(biāo).
(1)圓的坐標(biāo)方程為,直線坐標(biāo)方程為:.(2)極坐標(biāo)為(1,)
解析試題分析:(1)圓的普通方程與圓的極坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系在于圓上一點(diǎn)與極徑,極角間的關(guān)系:,直線與其極坐標(biāo)的關(guān)系亦如此;(2)
試題解析:
由點(diǎn)坐標(biāo)與極徑,極角間的關(guān)系:,可得
,即圓的坐標(biāo)方程為,
由,即直線坐標(biāo)方程為:.
(2)得,故l與圓O公共點(diǎn)的一個極坐標(biāo)為(1,).
考點(diǎn):極坐標(biāo)與直角坐標(biāo)方程的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某圓的極坐標(biāo)方程是,求:
(1)求圓的普通方程和一個參數(shù)方程;
(2)圓上所有點(diǎn)中的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,).若直線l過點(diǎn)P,且傾斜角為,圓C以M為圓心, 4為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,直線的參數(shù)方程是(t是參數(shù)), 以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,若圓C的極坐標(biāo)方程是ρ=4cosθ,且直線與圓C相切,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為.
(1)把曲線和的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個點(diǎn)到曲線的距離為,求曲線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線(為參數(shù)),曲線,將的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;
(2)若點(diǎn)P為曲線上的任意一點(diǎn),Q為曲線上的任意一點(diǎn),求線段的最小值,并求此時的P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.
(1)寫出直線的普通方程與圓的直角坐標(biāo)方程;
(2)由直線上的點(diǎn)向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在直角坐標(biāo)系中圓的參數(shù)方程為(為參數(shù)),若以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,則圓的極坐標(biāo)方程為______ __.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com