8.給定△ABC的三個(gè)條件:A=60°,b=4,a=2,則這樣的三角形解的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.無(wú)數(shù)個(gè)

分析 利用正弦定理列出關(guān)系式,把a(bǔ),b,sinA的值代入求出sinB的值,即可做出判斷.

解答 解:∵在△ABC中,a=2,b=4,A=60°,
∴由正弦定理$\frac{a}{sinA}=\frac{sinB}$得:sinB=$\frac{bsinA}{a}$=$\frac{4×\frac{\sqrt{3}}{2}}{2}$=$\sqrt{3}$>1,
則此三角形無(wú)解.
故選:A.

點(diǎn)評(píng) 此題考查了正弦定理,以及正弦函數(shù)的值域,熟練掌握正弦定理是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在銳角△ABC中,設(shè)角A,B,C所對(duì)邊分別為a,b,c,bsinCcosA-4csinAcosB=0.
(1)求證:tanB=4tanA;
(2)若tan(A+B)=-3,a=$\sqrt{10}$,b=5,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,an+1=$\frac{2n+3}{n}$Sn(n∈N*).
(1)證明:數(shù)列{$\frac{{S}_{n}}{n}$}是等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車(chē)應(yīng)用而生,某市場(chǎng)研究人員為了了解共享單車(chē)運(yùn)營(yíng)公司M的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系,求y關(guān)于x的線性回歸方程,并預(yù)測(cè)M公司2017年4月份(即x=7時(shí))的市場(chǎng)占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車(chē).現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的A、B兩款車(chē)型可供選擇,按規(guī)定每輛單車(chē)最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車(chē)輛報(bào)廢年限不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車(chē)型的單車(chē)各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命頻數(shù)表如下:
 報(bào)廢年限
車(chē)型
 1年 2年 3年 4年 總計(jì)
 A 20 35 35 10 100
 B 10 30 40 20 100
經(jīng)測(cè)算,平均每輛單車(chē)每年可以帶來(lái)收入500元,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,且以頻率作為每輛單車(chē)使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車(chē)產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車(chē)型?
(參考公式:回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overrightarrow{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x,下列結(jié)論正確的是( 。
A.函數(shù)f(x)的最小正周期為2πB.函數(shù)f(x)在區(qū)間($\frac{π}{12}$,$\frac{π}{4}$)上單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對(duì)稱(chēng)D.函數(shù)f(x)的圖象關(guān)于(-$\frac{π}{12}$,0)對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知任意冪函數(shù)經(jīng)過(guò)定點(diǎn)A(m,n),則函數(shù)f(x)=loga(x-m)+n經(jīng)過(guò)定點(diǎn)(m+1,n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列選項(xiàng)中說(shuō)法錯(cuò)誤的是(  )
A.27是3的倍數(shù)或27是9的倍數(shù)
B.平行四邊形的對(duì)角線互相垂直且平分
C.平行四邊形的對(duì)角線互相垂直或平分
D.1是方程x-1=0的根,且是方程x2-5x+4=0的根

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知sinα+cosα=$\frac{2}{3}$,則cos2α=±$\frac{2\sqrt{14}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10、15、…這樣的數(shù)稱(chēng)為“三角形數(shù)”,而把1、4、9、16、25、…這樣的數(shù)稱(chēng)為“正方形數(shù)”.從如圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和,下列等式中,符合這一規(guī)律的是( 。
A.16=3+13B.25=9+16C.36=10+26D.49=21+28

查看答案和解析>>

同步練習(xí)冊(cè)答案