【題目】在直三棱柱中,,設(shè)其外接球的球心為O,已知三棱錐的體積為2.則球O的表面積的最小值是()

A.B.C.D.

【答案】B

【解析】

設(shè),球的半徑為R,因?yàn)榈酌婢鶠橹苯侨切,故外接球的球心為兩個(gè)底面三角形外接圓圓心的連線的中點(diǎn),如圖中O點(diǎn)為三棱柱外接球的球心.根據(jù)三棱錐OABC的體積為2,可得,接著表示出R,根據(jù)基本不等式可得到球的表面積的最小值.

如圖,在中,

設(shè),則,取的中點(diǎn)分別為分別為的外接圓的圓心,連接,又直三棱柱的外接球的球心為O,則O的中點(diǎn),連接OB,則OB為三核柱外接球的半徑。設(shè)半徑為R,因?yàn)橹比庵?/span>,所以,所以三棱錐的高為2,即,又三棱錐體積為2,所以.中,,

所以,當(dāng)且僅當(dāng)時(shí)取“=”,所以球O的表面積的最小值是,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場對(duì)職工開展了安全知識(shí)競賽的活動(dòng),將競賽成績按照,,,分成組,得到下面頻率分布直方圖.根據(jù)頻率分布直方圖.下列說法正確的是( )

①根據(jù)頻率分布直方圖估計(jì)該商場的職工的安全知識(shí)競賽的成績的眾數(shù)估計(jì)值為;

②根據(jù)頻率分布直方圖估計(jì)該商場的職工的安全知識(shí)競賽的成績的中位數(shù)約為;

③若該商場有名職工,考試成績?cè)?/span>分以下的被解雇,則解雇的職工有人;

④若該商場有名職工,商場規(guī)定只有安全知識(shí)競賽超過(包括)的人員才能成為安全科成員,則安全科成員有.

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè):實(shí)數(shù)滿足 ,:實(shí)數(shù)滿足

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為.

(I)求曲線在點(diǎn)處的切線方程;

(II)求函數(shù)的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5)[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)試判斷函數(shù)上的單調(diào)性,并說明理由;

2)若是在區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 的中點(diǎn)。

1)證明: 平面;

2)設(shè) ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別為橢圓的左、右焦點(diǎn),點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點(diǎn),且,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案