【題目】已知互不重合的直線,,互不重合的平面,給出下列四個(gè)命題,錯(cuò)誤的命題是(

A.,,則

B.,,則

C.,,則

D.,則

【答案】D

【解析】

A:根據(jù)線面平行的性質(zhì)定理進(jìn)行判斷即可;

B:利用平面法向量和面面垂直的性質(zhì)進(jìn)行判斷即可;

C:利用線面垂直的判定定理進(jìn)行判斷即可;

D:根據(jù)線面關(guān)系進(jìn)行判斷即可.

A:過作一平面,與都相交,設(shè),如下圖所示:

則有,又,所以,所以,因此有,故本命題是真命題;

B:因?yàn)?/span>,所以向量是平面,的法向量,而,所以,即,故本命題是真命題;

C:設(shè),在平面內(nèi)任意一點(diǎn),作,如下圖所示:由面面垂直的性質(zhì)定理可知:,因?yàn)?/span>,所以有,

又因?yàn)?/span>,所以,故本命題是真命題;

D:因?yàn)?/span>,所以,故本命題是假命題.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,有兩個(gè)圓,其中為正常數(shù),滿足,一個(gè)動(dòng)圓與兩圓都相切,則動(dòng)圓圓心的軌跡方程可以是(

A.兩個(gè)橢圓B.兩個(gè)雙曲線

C.一個(gè)雙曲線和一條直線D.一個(gè)橢圓和一個(gè)雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體中,點(diǎn)P在正方體的對角線AB上,點(diǎn)Q在正方體的棱CD上,若P為動(dòng)點(diǎn),Q為動(dòng)點(diǎn),則PQ的最小值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一項(xiàng)針對都市熟男(三線以上城市,歲男性)消費(fèi)水平的調(diào)查顯示,對于最近一年內(nèi)是否購買過以下七類高價(jià)商品,全體被調(diào)查者,以及其中包括的1980年及以后出生(80后)被調(diào)查者,1980年以前出生(80前)被調(diào)查者回答“是”的比例分別如下:

全體被調(diào)查者

80后被調(diào)查者

80前被調(diào)查者

電子產(chǎn)品

56.9%

66.0%

48.5%

服裝

23.0%

24.9%

21.2%

手表

14.3%

19.4%

9.7%

運(yùn)動(dòng)、戶外用品

10.4%

11.1%

9.7%

珠寶首飾

8.6%

10.8%

6.5%

箱包

8.1%

11.3%

5.1%

個(gè)護(hù)與化妝品

6.6%

6.0%

7.2%

以上皆無

25.3%

17.9%

32.1%

根據(jù)表格中數(shù)據(jù)判斷,以下分析錯(cuò)誤的是( )

A. 都市熟男購買比例最高的高價(jià)商品是電子產(chǎn)品

B. 從整體上看,80后購買高價(jià)商品的意愿高于80前

C. 80前超過3成一年內(nèi)從未購買過表格中七類高價(jià)商品

D. 被調(diào)查的都市熟男中80后人數(shù)與80前人數(shù)的比例大約為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),為曲線上的一動(dòng)點(diǎn).

(I)求動(dòng)點(diǎn)對應(yīng)的參數(shù)從變動(dòng)到時(shí),線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,且,.

1)求證:;

2)在線段,是否存在一點(diǎn),使得二面角的大小為,如果存在,與平面所成角的正弦值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:①在圓柱的上、下底面的圓周上各取一點(diǎn),則這兩點(diǎn)的連線是圓柱的母線;②存在每個(gè)面都是直角三角形的四面體;③若三棱錐的三條側(cè)棱兩兩垂直,則其三個(gè)側(cè)面也兩兩垂直;④棱臺(tái)的上、下底面可以不相似,但側(cè)棱長一定相等.其中正確命題的個(gè)數(shù)是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為參數(shù),且.

(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值;

(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;

(Ⅲ)若對(Ⅱ)中所求的取值范圍內(nèi)的任意函數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案